

labscript

labscript, a component of the labscript suite, is an API used to define the experiment logic of a buffered experiment shot. This documentation will outline the general device hierarchy used when defining a connection table, and the labscript classes used to command input and output. For device specific documentation, and documentation for adding support for new devices, please refer to the labscript-devices [https://docs.labscriptsuite.org/projects/labscript-devices/en/latest/] documentation.

Introduction

The labscript API is used to define the logic of an experiment that you wish to run. It is recommended that you read our paper before this documentation, so you are familiar with terms like pseudoclock. It would also be a good idea to familiarise yourself with the Python programming language and object oriented (OO) programming if you are not already.

To give you an idea of what a sample experiment looks like, the simplest experiment script (that does something) using the labscript API is below:

from labscript import *
from labscript_devices.PulseBlaster import PulseBlaster

Connection Table
PulseBlaster(name='pulseblaster_0', board_number=0)
DigitalOut(name='my_digital_out', parent_device=pulseblaster_0.direct_outputs, connection='flag 2')

#Experiment Logic
start()
my_digital_out.go_low(t=0) # start low at the start
my_digital_out.go_high(t=1) # go high at 1s
stop(2) # stop at 2s

The script consists of two parts, the connection table and the experiment logic which will be discussed in the following sections.

Connection Table

The connection table maps out the way input/output devices are connected to each other in your lab, and the channels (individual inputs/outputs) they have. The devices in your lab should be connected in a similar way to that shown in the figure below.

[image: Example wiring diagram.]
Here we see two PseudoclockDevice instances in the top tier of the diagram. They do not have a parent device that tells them when to update their output (this is true for all PseudoclockDevice instances). However, all but one (the master pseudoclock device) must be triggered by an output clocked by the master pseudoclock device.

Each PseudoclockDevice instance should have one or more Pseudoclock children. Some PseudoclockDevice instances may automatically create these children for you (check the device specific documentation). In turn, each Pseudoclock will have one of more ClockLine instances connected to it. These ClockLine instances generally refer to physical outputs of a device which will be used to clock another device. However, in some cases, one or more ClockLine instances may be internally created for you (check the device specific documentation).

If a device is not a PseudoclockDevice, it must be connected to one via a clockline. such devices inherit from IntermediateDevice. Inputs and outputs are then connected to these devices. For example, DigitalOut, AnalogOut, and DDS. See labscript.outputs and labscript.inputs for a complete list. Note that devices determine what types of inputs and outputs can be connected, see labscript-devices [https://docs.labscriptsuite.org/projects/labscript-devices/en/latest/] for device information.

If a PseudoclockDevice also has outputs that are not used for a ClockLine, then an IntermediateDevice is internally instantiated, and should be made available through the PseudoclockDevice.direct_outputs attribute (for example see the PulseBlaster [https://docs.labscriptsuite.org/projects/labscript-devices/en/latest/devices/pulseblaster/#labscript_devices.PulseBlaster.PulseBlaster] implementation).

Note

Most user’s will not need to use PseudoclockDevice, Pseudoclock, and IntermediateDevice directly. These are generic classes that are subclassed by device implementations in labscript-devices [https://docs.labscriptsuite.org/projects/labscript-devices/en/latest/]. It is these device implementations that you are most likely to use.

API Reference

	labscript.core

	Core classes containing common device functionality - these are used in labscript-devices when adding support for a hardware device.

	labscript.outputs

	Classes for devices channels that are outputs

	labscript.inputs

	Classes for device channels that are inputs

	labscript.remote

	Classes for configuring remote/secondary BLACS and/or device workers

	labscript.constants

	Common constant factors for time and frequency

	labscript.labscript

	Everything else including the start(), stop(), and wait() functions - all other classes are also imported here for backwards compatibility

	labscript.functions

	Contains the functional forms of analog output ramps - these are not used directly, instead see the interfaces in AnalogQuantity/AnalogOut.

	labscript.base

	The labscript base class for all I/O/Device classes

	labscript.utils

	Utility functions

labscript.core

Core classes containing common device functionality - these are used in
labscript-devices when adding support for a hardware device.

Classes

	ClockLine(name, pseudoclock, connection[, ...])

	

	IntermediateDevice(name, parent_device, **kwargs)

	Base class for all devices that are to be clocked by a pseudoclock.

	Pseudoclock(name, pseudoclock_device, ...)

	Parent class of all pseudoclocks.

	PseudoclockDevice(name[, trigger_device, ...])

	Device that implements a pseudoclock.

	TriggerableDevice(name, parent_device, ...)

	A triggerable version of Device.

labscript.core.ClockLine

	
class ClockLine(name, pseudoclock, connection, ramping_allowed=True, **kwargs)

	Bases: Device

	
__init__(name, pseudoclock, connection, ramping_allowed=True, **kwargs)

	Creates a Device.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable name to assign this device to.

	parent_device (Device) – Parent of this device.

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – Connection on this device that links to parent.

	call_parents_add_device (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Flag to command device to
call its parent device’s add_device when adding a device.

	added_properties (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) –

	gui –

	worker –

	start_order (int [https://docs.python.org/3/library/functions.html#int], optional) – Priority when starting, sorted with all devices.

	stop_order (int [https://docs.python.org/3/library/functions.html#int], optional) – Priority when stopping, sorted with all devices.

	**kwargs – Other options to pass to parent.

Methods

	__init__(name, pseudoclock, connection[, ...])

	Creates a Device.

	add_device(device)

	Adds a child device to this device.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	clock_limit

	Clock limit for this line, typically set by speed of child Intermediate Devices.

	description

	Brief description of the device.

	minimum_clock_high_time

	The minimum time a clock tick must be in the logical high state

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	
add_device(device)

	Adds a child device to this device.

	Parameters:

	device (Device) – Device to add.

	Raises:

	LabscriptError – If device is not an allowed child of this device.

	
allowed_children = [<class 'labscript.core.IntermediateDevice'>]

	Defines types of devices that are allowed to be children of this device.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property clock_limit

	Clock limit for this line, typically set by speed of child Intermediate Devices.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
description = 'Generic ClockLine'

	Brief description of the device.

	
property minimum_clock_high_time

	The minimum time a clock tick must be in the logical high state

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

labscript.core.IntermediateDevice

	
class IntermediateDevice(name, parent_device, **kwargs)

	Bases: Device

Base class for all devices that are to be clocked by a pseudoclock.

	
__init__(name, parent_device, **kwargs)

	Provides some error checking to ensure parent_device
is a ClockLine.

Calls Device.__init__().

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable name to assign to device

	parent_device (ClockLine) – Parent ClockLine device.

Methods

	__init__(name, parent_device, **kwargs)

	Provides some error checking to ensure parent_device is a ClockLine.

	add_device(device)

	Adds a child device to this device.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	description

	Brief description of the device.

	minimum_clock_high_time

	

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	
property minimum_clock_high_time

	

labscript.core.Pseudoclock

	
class Pseudoclock(name, pseudoclock_device, connection, **kwargs)

	Bases: Device

Parent class of all pseudoclocks.

You won’t usually interact with this class directly, unless you are implementing a
new PsedoclockDevice in labscript-devices. It provides common functionality for
generating pseudoclock instructions..

	
__init__(name, pseudoclock_device, connection, **kwargs)

	Creates a Pseudoclock.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable name to assign the device instance to.

	pseudoclock_device (PseudoclockDevice) – Parent pseudoclock device

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – Connection on this device that links to parent

	**kwargs – Passed to Device().

Methods

	__init__(name, pseudoclock_device, ...)

	Creates a Pseudoclock.

	add_device(device)

	Adds a child device to this device.

	collect_change_times(all_outputs, ...)

	Asks all connected outputs for a list of times that they change state.

	expand_change_times(all_change_times, ...)

	For each time interval delimited by change_times, constructs an array of times at which the clock for this device needs to tick.

	generate_clock()

	Generate the pseudoclock and configure outputs for each tick of the clock.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_outputs_by_clockline()

	Obtain all outputs by clockline.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	
add_device(device)

	Adds a child device to this device.

	Parameters:

	device (Device) – Device to add.

	Raises:

	LabscriptError – If device is not an allowed child of this device.

	
allowed_children = [<class 'labscript.core.ClockLine'>]

	Defines types of devices that are allowed to be children of this device.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
collect_change_times(all_outputs, outputs_by_clockline)

	Asks all connected outputs for a list of times that they
change state.

Takes the union of all of these times. Note
that at this point, a change from holding-a-constant-value
to ramping-through-values is considered a single state
change. The clocking times will be filled in later in the
expand_change_times function, and the ramp values filled in with
expand_timeseries.

	Parameters:

	
	all_outputs (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of all outputs connected to this
pseudoclock.

	outputs_by_clockline (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – List of all outputs connected
to this pseudoclock, organized by clockline.

	Returns:

	Tuple containing:

	all_change_times (list): List of all change times.

	change_times (dict): Dictionary of all change times
organised by which clock they are attached to.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
description = 'Generic Pseudoclock'

	Brief description of the device.

	
expand_change_times(all_change_times, change_times, outputs_by_clockline)

	For each time interval delimited by change_times, constructs
an array of times at which the clock for this device needs to
tick. If the interval has all outputs having constant values,
then only the start time is stored. If one or more outputs are
ramping, then the clock ticks at the maximum clock rate requested
by any of the outputs. Also produces a higher level description
of the clocking; self.clock. This list contains the information
that facilitates programming a pseudo clock using loops.

	
generate_clock()

	Generate the pseudoclock and configure outputs for each tick
of the clock.

	
generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save
to h5 file.

Will recursively call generate_code for all children devices.

	Parameters:

	hdf5_file (h5py.File [https://docs.h5py.org/en/stable/high/file.html#h5py.File]) – Handle to shot file.

	
get_outputs_by_clockline()

	Obtain all outputs by clockline.

	Returns:

	Tuple containing:

	all_outputs (list): List of all outputs, obtained from get_all_outputs().

	outputs_by_clockline (dict): Dictionary of outputs, organised by clockline.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

labscript.core.PseudoclockDevice

	
class PseudoclockDevice(name, trigger_device=None, trigger_connection=None, **kwargs)

	Bases: TriggerableDevice

Device that implements a pseudoclock.

	
__init__(name, trigger_device=None, trigger_connection=None, **kwargs)

	Instantiates a pseudoclock device.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable to assign to this device.

	trigger_device (DigitalOut) – Sets the parent triggering output.
If None, this is considered the master pseudoclock.

	trigger_connection (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Must be provided if trigger_device is
provided. Specifies the channel of the parent device.

	**kwargs – Passed to TriggerableDevice.__init__().

Methods

	__init__(name[, trigger_device, ...])

	Instantiates a pseudoclock device.

	add_device(device)

	Adds a child device to this device.

	do_checks(outputs)

	Basic error checking to ensure the user's instructions make sense.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	offset_instructions_from_trigger(outputs)

	Offset instructions for child devices by the appropriate trigger times.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	set_initial_trigger_time(t)

	Sets the initial trigger time of the pseudoclock.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

	trigger(t, duration[, wait_delay])

	Ask the trigger device to produce a digital pulse of a given duration to trigger this pseudoclock.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	description

	Brief description of the device.

	is_master_pseudoclock

	Whether this device is the master pseudoclock.

	minimum_recovery_time

	Minimum time required before another trigger can occur.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	trigger_delay

	

	trigger_edge_type

	Type of trigger.

	trigger_minimum_duration

	

	wait_delay

	

	
allowed_children = [<class 'labscript.core.Pseudoclock'>]

	Defines types of devices that are allowed to be children of this device.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
description = 'Generic Pseudoclock Device'

	Brief description of the device.

	
do_checks(outputs)

	Basic error checking to ensure the user’s instructions make sense.

	Parameters:

	outputs (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of outputs to check.

	
generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save
to h5 file.

Will recursively call generate_code for all children devices.

	Parameters:

	hdf5_file (h5py.File [https://docs.h5py.org/en/stable/high/file.html#h5py.File]) – Handle to shot file.

	
property is_master_pseudoclock

	Whether this device is the master pseudoclock.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
offset_instructions_from_trigger(outputs)

	Offset instructions for child devices by the appropriate trigger times.

	Parameters:

	outputs (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of outputs to offset.

	
set_initial_trigger_time(t)

	Sets the initial trigger time of the pseudoclock.

If this is the master pseudoclock, time must be 0.

	Parameters:

	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, to trigger this device.

	
trigger(t, duration, wait_delay=0)

	Ask the trigger device to produce a digital pulse of a given duration
to trigger this pseudoclock.

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, to trigger this device.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – Duration, in seconds, of the trigger pulse.

	wait_delay (float [https://docs.python.org/3/library/functions.html#float], optional) – Time, in seconds, to delay the trigger.

	
trigger_delay = 0

	

	
trigger_edge_type = 'rising'

	Type of trigger. Must be 'rising' or 'falling'.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
trigger_minimum_duration = 0

	

	
wait_delay = 0

	

labscript.core.TriggerableDevice

	
class TriggerableDevice(name, parent_device, connection, parentless=False, **kwargs)

	Bases: Device

A triggerable version of Device.

This class is for devices that do not require a
pseudoclock, but do require a trigger. This enables
them to have a Trigger device as a parent.

	
__init__(name, parent_device, connection, parentless=False, **kwargs)

	Instantiate a Triggerable Device.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	() (parent_device) –

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	parentless (bool [https://docs.python.org/3/library/functions.html#bool], optional) –

	**kwargs – Passed to Device.__init__().

	Raises:

	LabscriptError – If trigger type of this device does not match
 the trigger type of the parent Trigger.

Methods

	__init__(name, parent_device, connection[, ...])

	Instantiate a Triggerable Device.

	add_device(device)

	Adds a child device to this device.

	do_checks()

	Check that all devices sharing a trigger device have triggers when this device has a trigger.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

	trigger(t, duration)

	Request parent trigger device to produce a trigger.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	description

	Brief description of the device.

	minimum_recovery_time

	Minimum time required before another trigger can occur.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	trigger_edge_type

	Type of trigger.

	
do_checks()

	Check that all devices sharing a trigger device have triggers when
this device has a trigger.

	Raises:

	LabscriptError – If correct triggers do not exist for all devices.

	
generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save
to h5 file.

Will recursively call generate_code for all children devices.

	Parameters:

	hdf5_file (h5py.File [https://docs.h5py.org/en/stable/high/file.html#h5py.File]) – Handle to shot file.

	
minimum_recovery_time = 0

	Minimum time required before another trigger can occur.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
trigger(t, duration)

	Request parent trigger device to produce a trigger.

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, to produce a trigger.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – Duration, in seconds, of the trigger pulse.

	
trigger_edge_type = 'rising'

	Type of trigger. Must be 'rising' or 'falling'.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

labscript.outputs

Classes for devices channels that are outputs

Classes

	AnalogOut(name, parent_device, connection[, ...])

	Analog Output class for use with all devices that support timed analog outputs.

	AnalogQuantity(name, parent_device, connection)

	Base class for AnalogOut.

	DDS(name, parent_device, connection[, ...])

	DDS class for use with all devices that have DDS-like outputs.

	DDSQuantity(name, parent_device, connection)

	Used to define a DDS output.

	DigitalOut(name, parent_device, connection)

	Digital output class for use with all devices.

	DigitalQuantity(name, parent_device, connection)

	Base class for DigitalOut.

	Output(name, parent_device, connection[, ...])

	Base class for all output classes.

	Shutter(name, parent_device, connection[, ...])

	Customized version of DigitalOut that accounts for the open/close delay of a shutter automatically.

	StaticAnalogOut(*args, **kwargs)

	Static Analog Output class for use with all devices that have constant outputs.

	StaticAnalogQuantity(*args, **kwargs)

	Base class for StaticAnalogOut.

	StaticDDS(name, parent_device, connection[, ...])

	Static DDS class for use with all devices that have static DDS-like outputs.

	StaticDigitalOut(*args, **kwargs)

	Static Digital Output class for use with all devices that have constant outputs.

	StaticDigitalQuantity(*args, **kwargs)

	Base class for StaticDigitalOut.

	Trigger(name, parent_device, connection[, ...])

	Customized version of DigitalOut that tracks edge type.

labscript.outputs.AnalogOut

	
class AnalogOut(name, parent_device, connection, limits=None, unit_conversion_class=None, unit_conversion_parameters=None, default_value=None, **kwargs)

	Bases: AnalogQuantity

Analog Output class for use with all devices that support timed analog outputs.

	
__init__(name, parent_device, connection, limits=None, unit_conversion_class=None, unit_conversion_parameters=None, default_value=None, **kwargs)

	Instantiate an Output.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable name to assign the Output to.

	parent_device (IntermediateDevice) – Parent device the output
is connected to.

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – Channel of parent device output is connected to.

	limits (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – (min,max) allowed for the output.

	unit_conversion_class (labscript_utils:labscript_utils.unitconversions, optional) – Unit concersion class to use for the output.

	unit_conversion_parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Dictonary or kwargs to
pass to the unit conversion class.

	default_value (float [https://docs.python.org/3/library/functions.html#float], optional) – Default value of the output if no
output is commanded.

	**kwargs – Passed to Device.__init__().

	Raises:

	LabscriptError – Limits tuple is invalid or unit conversion class
 units don’t line up.

Methods

	__init__(name, parent_device, connection[, ...])

	Instantiate an Output.

	add_device(device)

	Adds a child device to this device.

	add_instruction(time, instruction[, units])

	Adds a hardware instruction to the device instruction list.

	apply_calibration(value, units)

	Apply the calibration defined by the unit conversion class, if present.

	constant(t, value[, units])

	Sets the output to a constant value at time t.

	customramp(t, duration, function, *args, ...)

	Define a custom function for the output.

	do_checks(trigger_times)

	Basic error checking to ensure the user's instructions make sense.

	exp_ramp(t, duration, initial, final, samplerate)

	Exponential ramp whose rate of change is set by an asymptotic value (zero argument).

	exp_ramp_t(t, duration, initial, final, ...)

	Exponential ramp whose rate of change is set by the time_constant.

	expand_timeseries(all_times, flat_all_times_len)

	This function evaluates the ramp functions in self.timeseries at the time points in all_times, and creates an array of output values at those times.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_change_times()

	If this function is being called, it means that the parent Pseudoclock has requested a list of times that this output changes state.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	get_ramp_times()

	If this is being called, then it means the parent Pseuedoclock has asked for a list of the output ramp start and stop times.

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	instruction_to_string(instruction)

	Gets a human readable description of an instruction.

	make_timeseries(change_times)

	If this is being called, then it means the parent Pseudoclock has asked for a list of this output's states at each time in change_times.

	offset_instructions_from_trigger(trigger_times)

	Subtracts self.trigger_delay from all instructions at or after each trigger_time.

	piecewise_accel_ramp(t, duration, initial, ...)

	Changes the output so that the second derivative follows one period of a triangle wave.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	ramp(t, duration, initial, final, samplerate)

	Command the output to perform a linear ramp.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

	sine(t, duration, amplitude, angfreq, phase, ...)

	Command the output to perform a sinusoidal modulation.

	sine4_ramp(t, duration, initial, final, ...)

	Command the output to perform an increasing ramp defined by one half period of a quartic sine wave.

	sine4_reverse_ramp(t, duration, initial, ...)

	Command the output to perform a decreasing ramp defined by one half period of a quartic sine wave.

	sine_ramp(t, duration, initial, final, ...)

	Command the output to perform a ramp defined by one half period of a squared sine wave.

	square_wave(t, duration, amplitude, ...[, ...])

	A standard square wave.

	square_wave_levels(t, duration, level_0, ...)

	A standard square wave.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	allowed_states

	

	clock_limit

	Returns the parent clock line's clock limit.

	default_value

	

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	scale_factor

	

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	trigger_delay

	The earliest time output can be commanded from this device after a trigger.

	wait_delay

	The earliest time output can be commanded from this device after a wait.

	
description = 'analog output'

	Brief description of the device.

labscript.outputs.AnalogQuantity

	
class AnalogQuantity(name, parent_device, connection, limits=None, unit_conversion_class=None, unit_conversion_parameters=None, default_value=None, **kwargs)

	Bases: Output

Base class for AnalogOut.

It is also used internally by DDS. You should never instantiate this
class directly.

	
__init__(name, parent_device, connection, limits=None, unit_conversion_class=None, unit_conversion_parameters=None, default_value=None, **kwargs)

	Instantiate an Output.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable name to assign the Output to.

	parent_device (IntermediateDevice) – Parent device the output
is connected to.

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – Channel of parent device output is connected to.

	limits (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – (min,max) allowed for the output.

	unit_conversion_class (labscript_utils:labscript_utils.unitconversions, optional) – Unit concersion class to use for the output.

	unit_conversion_parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Dictonary or kwargs to
pass to the unit conversion class.

	default_value (float [https://docs.python.org/3/library/functions.html#float], optional) – Default value of the output if no
output is commanded.

	**kwargs – Passed to Device.__init__().

	Raises:

	LabscriptError – Limits tuple is invalid or unit conversion class
 units don’t line up.

Methods

	__init__(name, parent_device, connection[, ...])

	Instantiate an Output.

	add_device(device)

	Adds a child device to this device.

	add_instruction(time, instruction[, units])

	Adds a hardware instruction to the device instruction list.

	apply_calibration(value, units)

	Apply the calibration defined by the unit conversion class, if present.

	constant(t, value[, units])

	Sets the output to a constant value at time t.

	customramp(t, duration, function, *args, ...)

	Define a custom function for the output.

	do_checks(trigger_times)

	Basic error checking to ensure the user's instructions make sense.

	exp_ramp(t, duration, initial, final, samplerate)

	Exponential ramp whose rate of change is set by an asymptotic value (zero argument).

	exp_ramp_t(t, duration, initial, final, ...)

	Exponential ramp whose rate of change is set by the time_constant.

	expand_timeseries(all_times, flat_all_times_len)

	This function evaluates the ramp functions in self.timeseries at the time points in all_times, and creates an array of output values at those times.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_change_times()

	If this function is being called, it means that the parent Pseudoclock has requested a list of times that this output changes state.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	get_ramp_times()

	If this is being called, then it means the parent Pseuedoclock has asked for a list of the output ramp start and stop times.

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	instruction_to_string(instruction)

	Gets a human readable description of an instruction.

	make_timeseries(change_times)

	If this is being called, then it means the parent Pseudoclock has asked for a list of this output's states at each time in change_times.

	offset_instructions_from_trigger(trigger_times)

	Subtracts self.trigger_delay from all instructions at or after each trigger_time.

	piecewise_accel_ramp(t, duration, initial, ...)

	Changes the output so that the second derivative follows one period of a triangle wave.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	ramp(t, duration, initial, final, samplerate)

	Command the output to perform a linear ramp.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

	sine(t, duration, amplitude, angfreq, phase, ...)

	Command the output to perform a sinusoidal modulation.

	sine4_ramp(t, duration, initial, final, ...)

	Command the output to perform an increasing ramp defined by one half period of a quartic sine wave.

	sine4_reverse_ramp(t, duration, initial, ...)

	Command the output to perform a decreasing ramp defined by one half period of a quartic sine wave.

	sine_ramp(t, duration, initial, final, ...)

	Command the output to perform a ramp defined by one half period of a squared sine wave.

	square_wave(t, duration, amplitude, ...[, ...])

	A standard square wave.

	square_wave_levels(t, duration, level_0, ...)

	A standard square wave.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	allowed_states

	

	clock_limit

	Returns the parent clock line's clock limit.

	default_value

	

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	scale_factor

	

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	trigger_delay

	The earliest time output can be commanded from this device after a trigger.

	wait_delay

	The earliest time output can be commanded from this device after a wait.

	
constant(t, value, units=None)

	Sets the output to a constant value at time t.

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, to set the constant output.

	value (float [https://docs.python.org/3/library/functions.html#float]) – Value to set.

	units – Units, defined by the unit conversion class, the value is in.

	
customramp(t, duration, function, *args, **kwargs)

	Define a custom function for the output.

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, to start the function.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – Length in time, in seconds, to perform the function.

	function (func) – Function handle that defines the output waveform.
First argument is the relative time from function start, in seconds.

	*args – Arguments passed to function.

	**kwargs – Keyword arguments pass to function.
Standard kwargs common to other output functions are: units,
samplerate, and truncation. These kwargs are optional, but will
not be passed to function if present.

	Returns:

	Duration the function is to be evaluate for. Equivalent to
truncation*duration.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
default_value = 0

	

	
description = 'analog quantity'

	Brief description of the device.

	
exp_ramp(t, duration, initial, final, samplerate, zero=0, units=None, truncation=None, truncation_type='linear', **kwargs)

	Exponential ramp whose rate of change is set by an asymptotic value (zero argument).

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – time to start the ramp

	duration (float [https://docs.python.org/3/library/functions.html#float]) – duration of the ramp

	initial (float [https://docs.python.org/3/library/functions.html#float]) – initial value of the ramp (sans truncation)

	final (float [https://docs.python.org/3/library/functions.html#float]) – final value of the ramp (sans truncation)

	zero (float [https://docs.python.org/3/library/functions.html#float]) – asymptotic value of the exponential decay/rise, i.e. limit as t –> inf

	samplerate (float [https://docs.python.org/3/library/functions.html#float]) – rate to sample the function

	units – unit conversion to apply to specified values before generating raw output

	truncation_type (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	'linear' truncation stops the ramp when it reaches the value given by the
truncation parameter, which must be between initial and final

	'exponential' truncation stops the ramp after a period of truncation*duration
In this instance, the truncation parameter should be between 0 (full truncation)
and 1 (no truncation).

	
exp_ramp_t(t, duration, initial, final, time_constant, samplerate, units=None, truncation=None, truncation_type='linear', **kwargs)

	Exponential ramp whose rate of change is set by the time_constant.

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – time to start the ramp

	duration (float [https://docs.python.org/3/library/functions.html#float]) – duration of the ramp

	initial (float [https://docs.python.org/3/library/functions.html#float]) – initial value of the ramp (sans truncation)

	final (float [https://docs.python.org/3/library/functions.html#float]) – final value of the ramp (sans truncation)

	time_constant (float [https://docs.python.org/3/library/functions.html#float]) – 1/e time of the exponential decay/rise

	samplerate (float [https://docs.python.org/3/library/functions.html#float]) – rate to sample the function

	units – unit conversion to apply to specified values before generating raw output

	truncation_type (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	'linear' truncation stops the ramp when it reaches the value given by the
truncation parameter, which must be between initial and final

	'exponential' truncation stops the ramp after a period of truncation*duration
In this instance, the truncation parameter should be between 0 (full truncation)
and 1 (no truncation).

	
piecewise_accel_ramp(t, duration, initial, final, samplerate, units=None, truncation=1.0)

	Changes the output so that the second derivative follows one period of a triangle wave.

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, at which to begin the ramp.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – Duration of the ramp, in seconds.

	initial (float [https://docs.python.org/3/library/functions.html#float]) – Initial output value at time t.

	final (float [https://docs.python.org/3/library/functions.html#float]) – Final output value at time t+duration.

	samplerate (float [https://docs.python.org/3/library/functions.html#float]) – Update rate of the output, in Hz.

	units – Units, defined by the unit conversion class, the value is in.

	truncation (float [https://docs.python.org/3/library/functions.html#float], optional) – Fraction of ramp to perform. Default 1.0.

	Returns:

	Time the ramp will take to complete.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
ramp(t, duration, initial, final, samplerate, units=None, truncation=1.0)

	Command the output to perform a linear ramp.

Defined by
f(t) = ((final - initial)/duration)*t + initial

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, to begin the ramp.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – Length, in seconds, of the ramp.

	initial (float [https://docs.python.org/3/library/functions.html#float]) – Initial output value, at time t.

	final (float [https://docs.python.org/3/library/functions.html#float]) – Final output value, at time t+duration.

	samplerate (float [https://docs.python.org/3/library/functions.html#float]) – Rate, in Hz, to update the output.

	units – Units the output values are given in, as specified by the
unit conversion class.

	truncation (float [https://docs.python.org/3/library/functions.html#float], optional) – Fraction of ramp to perform. Must be between 0 and 1.

	Returns:

	Length of time ramp will take to complete.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
sine(t, duration, amplitude, angfreq, phase, dc_offset, samplerate, units=None, truncation=1.0)

	Command the output to perform a sinusoidal modulation.

Defined by
f(t) = amplitude*sin(angfreq*t + phase) + dc_offset

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, to begin the ramp.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – Length, in seconds, of the ramp.

	amplitude (float [https://docs.python.org/3/library/functions.html#float]) – Amplitude of the modulation.

	angfreq (float [https://docs.python.org/3/library/functions.html#float]) – Angular frequency, in radians per second.

	phase (float [https://docs.python.org/3/library/functions.html#float]) – Phase offset of the sine wave, in radians.

	dc_offset (float [https://docs.python.org/3/library/functions.html#float]) – DC offset of output away from 0.

	samplerate (float [https://docs.python.org/3/library/functions.html#float]) – Rate, in Hz, to update the output.

	units – Units the output values are given in, as specified by the
unit conversion class.

	truncation (float [https://docs.python.org/3/library/functions.html#float], optional) – Fraction of duration to perform. Must be between 0 and 1.

	Returns:

	Length of time modulation will take to complete. Equivalent to truncation*duration.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
sine4_ramp(t, duration, initial, final, samplerate, units=None, truncation=1.0)

	Command the output to perform an increasing ramp defined by one half period of a quartic sine wave.

Defined by
f(t) = (final-initial)*(sin(pi*t/(2*duration)))^4 + initial

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, to begin the ramp.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – Length, in seconds, of the ramp.

	initial (float [https://docs.python.org/3/library/functions.html#float]) – Initial output value, at time t.

	final (float [https://docs.python.org/3/library/functions.html#float]) – Final output value, at time t+duration.

	samplerate (float [https://docs.python.org/3/library/functions.html#float]) – Rate, in Hz, to update the output.

	units – Units the output values are given in, as specified by the
unit conversion class.

	truncation (float [https://docs.python.org/3/library/functions.html#float], optional) – Fraction of ramp to perform. Must be between 0 and 1.

	Returns:

	Length of time ramp will take to complete.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
sine4_reverse_ramp(t, duration, initial, final, samplerate, units=None, truncation=1.0)

	Command the output to perform a decreasing ramp defined by one half period of a quartic sine wave.

Defined by
f(t) = (final-initial)*(sin(pi*t/(2*duration)))^4 + initial

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, to begin the ramp.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – Length, in seconds, of the ramp.

	initial (float [https://docs.python.org/3/library/functions.html#float]) – Initial output value, at time t.

	final (float [https://docs.python.org/3/library/functions.html#float]) – Final output value, at time t+duration.

	samplerate (float [https://docs.python.org/3/library/functions.html#float]) – Rate, in Hz, to update the output.

	units – Units the output values are given in, as specified by the
unit conversion class.

	truncation (float [https://docs.python.org/3/library/functions.html#float], optional) – Fraction of ramp to perform. Must be between 0 and 1.

	Returns:

	Length of time ramp will take to complete.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
sine_ramp(t, duration, initial, final, samplerate, units=None, truncation=1.0)

	Command the output to perform a ramp defined by one half period of a squared sine wave.

Defined by
f(t) = (final-initial)*(sin(pi*t/(2*duration)))^2 + initial

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, to begin the ramp.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – Length, in seconds, of the ramp.

	initial (float [https://docs.python.org/3/library/functions.html#float]) – Initial output value, at time t.

	final (float [https://docs.python.org/3/library/functions.html#float]) – Final output value, at time t+duration.

	samplerate (float [https://docs.python.org/3/library/functions.html#float]) – Rate, in Hz, to update the output.

	units – Units the output values are given in, as specified by the
unit conversion class.

	truncation (float [https://docs.python.org/3/library/functions.html#float], optional) – Fraction of ramp to perform. Must be between 0 and 1.

	Returns:

	Length of time ramp will take to complete.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
square_wave(t, duration, amplitude, frequency, phase, offset, duty_cycle, samplerate, units=None, truncation=1.0)

	A standard square wave.

This method generates a square wave which starts HIGH (when its phase is
zero) then transitions to/from LOW at the specified frequency in Hz.
The amplitude parameter specifies the peak-to-peak amplitude of the
square wave which is centered around offset. For example, setting
amplitude=1 and offset=0 would give a square wave which transitions
between 0.5 and -0.5. Similarly, setting amplitude=2 and
offset=3 would give a square wave which transitions between 4 and
2. To instead specify the HIGH/LOW levels directly, use
square_wave_levels().

Note that because the transitions of a square wave are sudden and
discontinuous, small changes in timings (e.g. due to numerical rounding
errors) can affect the output value. This is particularly relevant at
the end of the waveform, as the final output value may be different than
expected if the end of the waveform is close to an edge of the square
wave. Care is taken in the implementation of this method to avoid such
effects, but it still may be desirable to call constant() after
square_wave() to ensure a particular final value. The output value may
also be different than expected at certain moments in the middle of the
waveform due to the finite samplerate (which may be different than the
requested samplerate), particularly if the actual samplerate is not a
multiple of frequency.

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – The time at which to start the square wave.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – The duration for which to output a square wave
when truncation is set to 1. When truncation is set to a
value less than 1, the actual duration will be shorter than
duration by that factor.

	amplitude (float [https://docs.python.org/3/library/functions.html#float]) – The peak-to-peak amplitude of the square wave.
See above for an example of how to calculate the HIGH/LOW output
values given the amplitude and offset values.

	frequency (float [https://docs.python.org/3/library/functions.html#float]) – The frequency of the square wave, in Hz.

	phase (float [https://docs.python.org/3/library/functions.html#float]) – The initial phase of the square wave. Note that the
square wave is defined such that the phase goes from 0 to 1 (NOT
2 pi) over one cycle, so setting phase=0.5 will start the
square wave advanced by 1/2 of a cycle. Setting phase equal to
duty_cycle will cause the waveform to start LOW rather than
HIGH.

	offset (float [https://docs.python.org/3/library/functions.html#float]) – The offset of the square wave, which is the value
halfway between the LOW and HIGH output values. Note that this
is NOT the LOW output value; setting offset to 0 will cause
the HIGH/LOW values to be symmetrically split around 0. See
above for an example of how to calculate the HIGH/LOW output
values given the amplitude and offset values.

	duty_cycle (float [https://docs.python.org/3/library/functions.html#float]) – The fraction of the cycle for which the output
should be HIGH. This should be a number between zero and one
inclusively. For example, setting duty_cycle=0.1 will
create a square wave which outputs HIGH over 10% of the
cycle and outputs LOW over 90% of the cycle.

	samplerate (float [https://docs.python.org/3/library/functions.html#float]) – The requested rate at which to update the output
value. Note that the actual samplerate used may be different if,
for example, another output of the same device has a
simultaneous ramp with a different requested samplerate, or if
1 / samplerate isn’t an integer multiple of the pseudoclock’s
timing resolution.

	units (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The units of the output values. If set to
None then the output’s base units will be used. Defaults to
None.

	truncation (float [https://docs.python.org/3/library/functions.html#float], optional) – The actual duration of the square wave
will be duration * truncation and truncation must be set to
a value in the range [0, 1] (inclusively). Set to 1 to output
the full duration of the square wave. Setting it to 0 will
skip the square wave entirely. Defaults to 1..

	Returns:

	
	The actual duration of the square wave, accounting
	for truncation.

	Return type:

	duration (float [https://docs.python.org/3/library/functions.html#float])

	
square_wave_levels(t, duration, level_0, level_1, frequency, phase, duty_cycle, samplerate, units=None, truncation=1.0)

	A standard square wave.

This method generates a square wave which starts at level_0 (when its
phase is zero) then transitions to/from level_1 at the specified
frequency. This is the same waveform output by square_wave(), but
parameterized differently. See that method’s docstring for more
information.

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – The time at which to start the square wave.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – The duration for which to output a square wave
when truncation is set to 1. When truncation is set to a
value less than 1, the actual duration will be shorter than
duration by that factor.

	level_0 (float [https://docs.python.org/3/library/functions.html#float]) – The initial level of the square wave, when the
phase is zero.

	level_1 (float [https://docs.python.org/3/library/functions.html#float]) – The other level of the square wave.

	frequency (float [https://docs.python.org/3/library/functions.html#float]) – The frequency of the square wave, in Hz.

	phase (float [https://docs.python.org/3/library/functions.html#float]) – The initial phase of the square wave. Note that the
square wave is defined such that the phase goes from 0 to 1 (NOT
2 pi) over one cycle, so setting phase=0.5 will start the
square wave advanced by 1/2 of a cycle. Setting phase equal to
duty_cycle will cause the waveform to start at level_1
rather than level_0.

	duty_cycle (float [https://docs.python.org/3/library/functions.html#float]) – The fraction of the cycle for which the output
should be set to level_0. This should be a number between zero
and one inclusively. For example, setting duty_cycle=0.1 will
create a square wave which outputs level_0 over 10% of the
cycle and outputs level_1 over 90% of the cycle.

	samplerate (float [https://docs.python.org/3/library/functions.html#float]) – The requested rate at which to update the output
value. Note that the actual samplerate used may be different if,
for example, another output of the same device has a
simultaneous ramp with a different requested samplerate, or if
1 / samplerate isn’t an integer multiple of the pseudoclock’s
timing resolution.

	units (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The units of the output values. If set to
None then the output’s base units will be used. Defaults to
None.

	truncation (float [https://docs.python.org/3/library/functions.html#float], optional) – The actual duration of the square wave
will be duration * truncation and truncation must be set to
a value in the range [0, 1] (inclusively). Set to 1 to output
the full duration of the square wave. Setting it to 0 will
skip the square wave entirely. Defaults to 1..

	Returns:

	
	The actual duration of the square wave, accounting
	for truncation.

	Return type:

	duration (float [https://docs.python.org/3/library/functions.html#float])

labscript.outputs.DDS

	
class DDS(name, parent_device, connection, digital_gate=None, freq_limits=None, freq_conv_class=None, freq_conv_params=None, amp_limits=None, amp_conv_class=None, amp_conv_params=None, phase_limits=None, phase_conv_class=None, phase_conv_params=None, call_parents_add_device=True, **kwargs)

	Bases: DDSQuantity

DDS class for use with all devices that have DDS-like outputs.

	
__init__(name, parent_device, connection, digital_gate=None, freq_limits=None, freq_conv_class=None, freq_conv_params=None, amp_limits=None, amp_conv_class=None, amp_conv_params=None, phase_limits=None, phase_conv_class=None, phase_conv_params=None, call_parents_add_device=True, **kwargs)

	Instantiates a DDS quantity.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable for the object created.

	parent_device (IntermediateDevice) – Device this output is
connected to.

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output of parent device this DDS is connected to.

	digital_gate (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Configures a digital output to use as an enable/disable
gate for the output. Should contain keys 'device' and 'connection'
with arguments for the parent_device and connection for instantiating
the DigitalOut. All other (optional) keys are passed as kwargs.

	freq_limits (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – (lower, upper) limits for the
frequency of the output

	freq_conv_class (labscript_utils:labscript_utils.unitconversions, optional) – Unit conversion class for the frequency of the output.

	freq_conv_params (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments passed to the
unit conversion class for the frequency of the output.

	amp_limits (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – (lower, upper) limits for the
amplitude of the output

	amp_conv_class (labscript_utils:labscript_utils.unitconversions, optional) – Unit conversion class for the amplitude of the output.

	amp_conv_params (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments passed to the
unit conversion class for the amplitude of the output.

	phase_limits (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – (lower, upper) limits for the
phase of the output

	phase_conv_class (labscript_utils:labscript_utils.unitconversions, optional) – Unit conversion class for the phase of the output.

	phase_conv_params (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments passed to the
unit conversion class for the phase of the output.

	call_parents_add_device (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Have the parent device run
its add_device method.

	**kwargs – Keyword arguments passed to Device.__init__().

Methods

	__init__(name, parent_device, connection[, ...])

	Instantiates a DDS quantity.

	add_device(device)

	Adds a child device to this device.

	disable(t)

	Disable the Output.

	enable(t)

	Enable the Output.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	pulse(t, duration, amplitude, frequency[, ...])

	Pulse the output.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

	setamp(t, value[, units])

	Set the amplitude of the output.

	setfreq(t, value[, units])

	Set the frequency of the output.

	setphase(t, value[, units])

	Set the phase of the output.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

labscript.outputs.DDSQuantity

	
class DDSQuantity(name, parent_device, connection, digital_gate=None, freq_limits=None, freq_conv_class=None, freq_conv_params=None, amp_limits=None, amp_conv_class=None, amp_conv_params=None, phase_limits=None, phase_conv_class=None, phase_conv_params=None, call_parents_add_device=True, **kwargs)

	Bases: Device

Used to define a DDS output.

It is a container class, with properties that allow access to a frequency,
amplitude, and phase of the output as AnalogQuantity.
It can also have a gate, which provides enable/disable control of the output
as DigitalOut.

This class instantiates channels for frequency/amplitude/phase (and optionally the
gate) itself.

	
__init__(name, parent_device, connection, digital_gate=None, freq_limits=None, freq_conv_class=None, freq_conv_params=None, amp_limits=None, amp_conv_class=None, amp_conv_params=None, phase_limits=None, phase_conv_class=None, phase_conv_params=None, call_parents_add_device=True, **kwargs)

	Instantiates a DDS quantity.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable for the object created.

	parent_device (IntermediateDevice) – Device this output is
connected to.

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output of parent device this DDS is connected to.

	digital_gate (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Configures a digital output to use as an enable/disable
gate for the output. Should contain keys 'device' and 'connection'
with arguments for the parent_device and connection for instantiating
the DigitalOut. All other (optional) keys are passed as kwargs.

	freq_limits (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – (lower, upper) limits for the
frequency of the output

	freq_conv_class (labscript_utils:labscript_utils.unitconversions, optional) – Unit conversion class for the frequency of the output.

	freq_conv_params (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments passed to the
unit conversion class for the frequency of the output.

	amp_limits (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – (lower, upper) limits for the
amplitude of the output

	amp_conv_class (labscript_utils:labscript_utils.unitconversions, optional) – Unit conversion class for the amplitude of the output.

	amp_conv_params (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments passed to the
unit conversion class for the amplitude of the output.

	phase_limits (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – (lower, upper) limits for the
phase of the output

	phase_conv_class (labscript_utils:labscript_utils.unitconversions, optional) – Unit conversion class for the phase of the output.

	phase_conv_params (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments passed to the
unit conversion class for the phase of the output.

	call_parents_add_device (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Have the parent device run
its add_device method.

	**kwargs – Keyword arguments passed to Device.__init__().

Methods

	__init__(name, parent_device, connection[, ...])

	Instantiates a DDS quantity.

	add_device(device)

	Adds a child device to this device.

	disable(t)

	Disable the Output.

	enable(t)

	Enable the Output.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	pulse(t, duration, amplitude, frequency[, ...])

	Pulse the output.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

	setamp(t, value[, units])

	Set the amplitude of the output.

	setfreq(t, value[, units])

	Set the frequency of the output.

	setphase(t, value[, units])

	Set the phase of the output.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	
allowed_children = [<class 'labscript.outputs.AnalogQuantity'>, <class 'labscript.outputs.DigitalOut'>, <class 'labscript.outputs.DigitalQuantity'>]

	Defines types of devices that are allowed to be children of this device.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
description = 'DDS'

	Brief description of the device.

	
disable(t)

	Disable the Output.

	Parameters:

	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, to disable the output at.

	Raises:

	LabscriptError – If the DDS is not instantiated with a digital gate.

	
enable(t)

	Enable the Output.

	Parameters:

	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, to enable the output at.

	Raises:

	LabscriptError – If the DDS is not instantiated with a digital gate.

	
pulse(t, duration, amplitude, frequency, phase=None, amplitude_units=None, frequency_units=None, phase_units=None, print_summary=False)

	Pulse the output.

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, to start the pulse at.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – Length of the pulse, in seconds.

	amplitude (float [https://docs.python.org/3/library/functions.html#float]) – Amplitude to set the output to during the pulse.

	frequency (float [https://docs.python.org/3/library/functions.html#float]) – Frequency to set the output to during the pulse.

	phase (float [https://docs.python.org/3/library/functions.html#float], optional) – Phase to set the output to during the pulse.

	amplitude_units – Units of amplitude.

	frequency_units – Units of frequency.

	phase_units – Units of phase.

	print_summary (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Print a summary of the pulse during
compilation time.

	Returns:

	Duration of the pulse, in seconds.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
setamp(t, value, units=None)

	Set the amplitude of the output.

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, when the amplitude is set.

	value (float [https://docs.python.org/3/library/functions.html#float]) – Amplitude to set to.

	units – Units that the value is defined in.

	
setfreq(t, value, units=None)

	Set the frequency of the output.

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, when the frequency is set.

	value (float [https://docs.python.org/3/library/functions.html#float]) – Frequency to set to.

	units – Units that the value is defined in.

	
setphase(t, value, units=None)

	Set the phase of the output.

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, when the phase is set.

	value (float [https://docs.python.org/3/library/functions.html#float]) – Phase to set to.

	units – Units that the value is defined in.

labscript.outputs.DigitalOut

	
class DigitalOut(name, parent_device, connection, inverted=False, **kwargs)

	Bases: DigitalQuantity

Digital output class for use with all devices.

	
__init__(name, parent_device, connection, inverted=False, **kwargs)

	Instantiate a digital quantity.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable name to assign the quantity to.

	parent_device (IntermediateDevice) – Device this quantity is attached to.

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – Connection on parent device we are connected to.

	inverted (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, output is logic inverted.

	**kwargs – Passed to Output.__init__().

Methods

	__init__(name, parent_device, connection[, ...])

	Instantiate a digital quantity.

	add_device(device)

	Adds a child device to this device.

	add_instruction(time, instruction[, units])

	Adds a hardware instruction to the device instruction list.

	apply_calibration(value, units)

	Apply the calibration defined by the unit conversion class, if present.

	disable(t)

	Commands the output to disable.

	do_checks(trigger_times)

	Basic error checking to ensure the user's instructions make sense.

	enable(t)

	Commands the output to enable.

	expand_timeseries(all_times, flat_all_times_len)

	This function evaluates the ramp functions in self.timeseries at the time points in all_times, and creates an array of output values at those times.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_change_times()

	If this function is being called, it means that the parent Pseudoclock has requested a list of times that this output changes state.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	get_ramp_times()

	If this is being called, then it means the parent Pseuedoclock has asked for a list of the output ramp start and stop times.

	go_high(t)

	Commands the output to go high.

	go_low(t)

	Commands the output to go low.

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	instruction_to_string(instruction)

	Gets a human readable description of an instruction.

	make_timeseries(change_times)

	If this is being called, then it means the parent Pseudoclock has asked for a list of this output's states at each time in change_times.

	offset_instructions_from_trigger(trigger_times)

	Subtracts self.trigger_delay from all instructions at or after each trigger_time.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	repeat_pulse_sequence(t, duration, ...)

	This function only works if the DigitalQuantity is on a fast clock

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	allowed_states

	

	clock_limit

	Returns the parent clock line's clock limit.

	default_value

	

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	scale_factor

	

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	trigger_delay

	The earliest time output can be commanded from this device after a trigger.

	wait_delay

	The earliest time output can be commanded from this device after a wait.

	
description = 'digital output'

	Brief description of the device.

labscript.outputs.DigitalQuantity

	
class DigitalQuantity(name, parent_device, connection, inverted=False, **kwargs)

	Bases: Output

Base class for DigitalOut.

It is also used internally by other, more complex, output types.

	
__init__(name, parent_device, connection, inverted=False, **kwargs)

	Instantiate a digital quantity.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable name to assign the quantity to.

	parent_device (IntermediateDevice) – Device this quantity is attached to.

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – Connection on parent device we are connected to.

	inverted (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, output is logic inverted.

	**kwargs – Passed to Output.__init__().

Methods

	__init__(name, parent_device, connection[, ...])

	Instantiate a digital quantity.

	add_device(device)

	Adds a child device to this device.

	add_instruction(time, instruction[, units])

	Adds a hardware instruction to the device instruction list.

	apply_calibration(value, units)

	Apply the calibration defined by the unit conversion class, if present.

	disable(t)

	Commands the output to disable.

	do_checks(trigger_times)

	Basic error checking to ensure the user's instructions make sense.

	enable(t)

	Commands the output to enable.

	expand_timeseries(all_times, flat_all_times_len)

	This function evaluates the ramp functions in self.timeseries at the time points in all_times, and creates an array of output values at those times.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_change_times()

	If this function is being called, it means that the parent Pseudoclock has requested a list of times that this output changes state.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	get_ramp_times()

	If this is being called, then it means the parent Pseuedoclock has asked for a list of the output ramp start and stop times.

	go_high(t)

	Commands the output to go high.

	go_low(t)

	Commands the output to go low.

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	instruction_to_string(instruction)

	Gets a human readable description of an instruction.

	make_timeseries(change_times)

	If this is being called, then it means the parent Pseudoclock has asked for a list of this output's states at each time in change_times.

	offset_instructions_from_trigger(trigger_times)

	Subtracts self.trigger_delay from all instructions at or after each trigger_time.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	repeat_pulse_sequence(t, duration, ...)

	This function only works if the DigitalQuantity is on a fast clock

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	allowed_states

	

	clock_limit

	Returns the parent clock line's clock limit.

	default_value

	

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	scale_factor

	

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	trigger_delay

	The earliest time output can be commanded from this device after a trigger.

	wait_delay

	The earliest time output can be commanded from this device after a wait.

	
allowed_states = {0: 'low', 1: 'high'}

	

	
default_value = 0

	

	
description = 'digital quantity'

	Brief description of the device.

	
disable(t)

	Commands the output to disable.

If inverted=True, this will set the output high.

	Parameters:

	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, when the output disables.

	
dtype

	alias of uint32

	
enable(t)

	Commands the output to enable.

If inverted=True, this will set the output low.

	Parameters:

	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, when the output enables.

	
go_high(t)

	Commands the output to go high.

	Parameters:

	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, when the output goes high.

	
go_low(t)

	Commands the output to go low.

	Parameters:

	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, when the output goes low.

	
repeat_pulse_sequence(t, duration, pulse_sequence, period, samplerate)

	This function only works if the DigitalQuantity is on a fast clock

The pulse sequence specified will be repeated from time t until t+duration.

Note 1: The samplerate should be significantly faster than the smallest time difference between
two states in the pulse sequence, or else points in your pulse sequence may never be evaluated.

Note 2: The time points your pulse sequence is evaluated at may be different than you expect,
if another output changes state between t and t+duration. As such, you should set the samplerate
high enough that even if this rounding of tie points occurs (to fit in the update required to change the other output)
your pulse sequence will not be significantly altered)

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, to start the pulse sequence.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – How long, in seconds, to repeat the sequence.

	pulse_sequence (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of tuples, with each tuple of the form
(time, state).

	period (float [https://docs.python.org/3/library/functions.html#float]) – Defines how long the final tuple will be held for before
repeating the pulse sequence. In general, should be longer than the
entire pulse sequence.

	samplerate (float [https://docs.python.org/3/library/functions.html#float]) – How often to update the output, in Hz.

labscript.outputs.Output

	
class Output(name, parent_device, connection, limits=None, unit_conversion_class=None, unit_conversion_parameters=None, default_value=None, **kwargs)

	Bases: Device

Base class for all output classes.

	
__init__(name, parent_device, connection, limits=None, unit_conversion_class=None, unit_conversion_parameters=None, default_value=None, **kwargs)

	Instantiate an Output.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable name to assign the Output to.

	parent_device (IntermediateDevice) – Parent device the output
is connected to.

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – Channel of parent device output is connected to.

	limits (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – (min,max) allowed for the output.

	unit_conversion_class (labscript_utils:labscript_utils.unitconversions, optional) – Unit concersion class to use for the output.

	unit_conversion_parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Dictonary or kwargs to
pass to the unit conversion class.

	default_value (float [https://docs.python.org/3/library/functions.html#float], optional) – Default value of the output if no
output is commanded.

	**kwargs – Passed to Device.__init__().

	Raises:

	LabscriptError – Limits tuple is invalid or unit conversion class
 units don’t line up.

Methods

	__init__(name, parent_device, connection[, ...])

	Instantiate an Output.

	add_device(device)

	Adds a child device to this device.

	add_instruction(time, instruction[, units])

	Adds a hardware instruction to the device instruction list.

	apply_calibration(value, units)

	Apply the calibration defined by the unit conversion class, if present.

	do_checks(trigger_times)

	Basic error checking to ensure the user's instructions make sense.

	expand_timeseries(all_times, flat_all_times_len)

	This function evaluates the ramp functions in self.timeseries at the time points in all_times, and creates an array of output values at those times.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_change_times()

	If this function is being called, it means that the parent Pseudoclock has requested a list of times that this output changes state.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	get_ramp_times()

	If this is being called, then it means the parent Pseuedoclock has asked for a list of the output ramp start and stop times.

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	instruction_to_string(instruction)

	Gets a human readable description of an instruction.

	make_timeseries(change_times)

	If this is being called, then it means the parent Pseudoclock has asked for a list of this output's states at each time in change_times.

	offset_instructions_from_trigger(trigger_times)

	Subtracts self.trigger_delay from all instructions at or after each trigger_time.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	allowed_states

	

	clock_limit

	Returns the parent clock line's clock limit.

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	scale_factor

	

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	trigger_delay

	The earliest time output can be commanded from this device after a trigger.

	wait_delay

	The earliest time output can be commanded from this device after a wait.

	
add_instruction(time, instruction, units=None)

	Adds a hardware instruction to the device instruction list.

	Parameters:

	
	time (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, that the instruction begins.

	instruction (dict [https://docs.python.org/3/library/stdtypes.html#dict] or float [https://docs.python.org/3/library/functions.html#float]) – Instruction to add.

	units (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Units instruction is in, if instruction
is a float.

	Raises:

	LabscriptError – If time requested is not allowed or samplerate
 is too fast.

	
allowed_states = None

	

	
apply_calibration(value, units)

	Apply the calibration defined by the unit conversion class, if present.

	Parameters:

	
	value (float [https://docs.python.org/3/library/functions.html#float]) – Value to apply calibration to.

	units (str [https://docs.python.org/3/library/stdtypes.html#str]) – Units to convert to. Must be defined by the unit
conversion class.

	Returns:

	Converted value.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	Raises:

	LabscriptError – If no unit conversion class is defined or units not
 in that class.

	
property clock_limit

	Returns the parent clock line’s clock limit.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
description = 'generic output'

	Brief description of the device.

	
do_checks(trigger_times)

	Basic error checking to ensure the user’s instructions make sense.

	Parameters:

	trigger_times (iterable) – Times to confirm don’t conflict with
instructions.

	Raises:

	LabscriptError – If a trigger time conflicts with an instruction.

	
dtype

	alias of float64

	
expand_timeseries(all_times, flat_all_times_len)

	This function evaluates the ramp functions in self.timeseries
at the time points in all_times, and creates an array of output
values at those times. These are the values that this output
should update to on each clock tick, and are the raw values that
should be used to program the output device. They are stored
in self.raw_output.

	
get_all_outputs()

	Get all children devices that are outputs.

For Output, this is self.

	Returns:

	List of children Output.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_change_times()

	If this function is being called, it means that the parent
Pseudoclock has requested a list of times that this output changes
state.

	Returns:

	List of times output changes values.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_ramp_times()

	If this is being called, then it means the parent Pseuedoclock
has asked for a list of the output ramp start and stop times.

	Returns:

	List of (start, stop) times of ramps for this Output.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
instruction_to_string(instruction)

	Gets a human readable description of an instruction.

	Parameters:

	instruction (dict [https://docs.python.org/3/library/stdtypes.html#dict] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Instruction to get description of,
or a fixed instruction defined in allowed_states.

	Returns:

	Instruction description.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
make_timeseries(change_times)

	If this is being called, then it means the parent Pseudoclock
has asked for a list of this output’s states at each time in
change_times. (Which are the times that one or more connected
outputs in the same pseudoclock change state). By state, I don’t
mean the value of the output at that moment, rather I mean what
instruction it has. This might be a single value, or it might
be a reference to a function for a ramp etc. This list of states
is stored in self.timeseries rather than being returned.

	
offset_instructions_from_trigger(trigger_times)

	Subtracts self.trigger_delay from all instructions at or after each trigger_time.

	Parameters:

	trigger_times (iterable) – Times of all trigger events.

	
scale_factor = 1

	

	
property trigger_delay

	The earliest time output can be commanded from this device after a trigger.
This is nonzeo on secondary pseudoclocks due to triggering delays.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
property wait_delay

	The earliest time output can be commanded from this device after a wait.
This is nonzeo on secondary pseudoclocks due to triggering delays and the fact
that the master clock doesn’t provide a resume trigger to secondary clocks until
a minimum time has elapsed: compiler.wait_delay. This is so that if a wait is
extremely short, the child clock is actually ready for the trigger.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

labscript.outputs.Shutter

	
class Shutter(name, parent_device, connection, delay=(0, 0), open_state=1, **kwargs)

	Bases: DigitalOut

Customized version of DigitalOut that accounts for the open/close
delay of a shutter automatically.

When using the methods open() and close(), the shutter open
and close times are precise without haveing to track the delays. Note:
delays can be set using runmanager globals and periodically updated
via a calibration.

Warning

If the shutter is asked to do something at t=0, it cannot start
moving earlier than that. This means the initial shutter states
will have imprecise timing.

	
__init__(name, parent_device, connection, delay=(0, 0), open_state=1, **kwargs)

	Instantiates a Shutter.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable to assign the object to.

	parent_device (IntermediateDevice) – Parent device the
digital output is connected to.

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – Physical output port of the device the digital
output is connected to.

	delay (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Tuple of the (open, close) delays, specified
in seconds.

	open_state (int [https://docs.python.org/3/library/functions.html#int], optional) – Allowed values are 0 or 1. Defines which
state of the digital output opens the shutter.

	Raises:

	LabscriptError – If the open_state is not 0 or 1.

Methods

	__init__(name, parent_device, connection[, ...])

	Instantiates a Shutter.

	add_device(device)

	Adds a child device to this device.

	add_instruction(time, instruction[, units])

	Adds a hardware instruction to the device instruction list.

	apply_calibration(value, units)

	Apply the calibration defined by the unit conversion class, if present.

	close(t)

	Command the shutter to close at time t.

	disable(t)

	Commands the output to disable.

	do_checks(trigger_times)

	Basic error checking to ensure the user's instructions make sense.

	enable(t)

	Commands the output to enable.

	expand_timeseries(all_times, flat_all_times_len)

	This function evaluates the ramp functions in self.timeseries at the time points in all_times, and creates an array of output values at those times.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_change_times(*args, **kwargs)

	If this function is being called, it means that the parent Pseudoclock has requested a list of times that this output changes state.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	get_ramp_times()

	If this is being called, then it means the parent Pseuedoclock has asked for a list of the output ramp start and stop times.

	go_high(t)

	Commands the output to go high.

	go_low(t)

	Commands the output to go low.

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	instruction_to_string(instruction)

	Gets a human readable description of an instruction.

	make_timeseries(change_times)

	If this is being called, then it means the parent Pseudoclock has asked for a list of this output's states at each time in change_times.

	offset_instructions_from_trigger(trigger_times)

	Subtracts self.trigger_delay from all instructions at or after each trigger_time.

	open(t)

	Command the shutter to open at time t.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	repeat_pulse_sequence(t, duration, ...)

	This function only works if the DigitalQuantity is on a fast clock

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	allowed_states

	

	clock_limit

	Returns the parent clock line's clock limit.

	default_value

	

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	scale_factor

	

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	trigger_delay

	The earliest time output can be commanded from this device after a trigger.

	wait_delay

	The earliest time output can be commanded from this device after a wait.

	
close(t)

	Command the shutter to close at time t.

Takes the close delay time into account.

Note that the delay time will not be take into account the close delay if the
command is made at t=0 (or other times less than the close delay). No warning
will be issued for this loss of precision during compilation.

	Parameters:

	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, when shutter should be closed.

	
description = 'shutter'

	Brief description of the device.

	
generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save
to h5 file.

Will recursively call generate_code for all children devices.

	Parameters:

	hdf5_file (h5py.File [https://docs.h5py.org/en/stable/high/file.html#h5py.File]) – Handle to shot file.

	
get_change_times(*args, **kwargs)

	If this function is being called, it means that the parent
Pseudoclock has requested a list of times that this output changes
state.

	Returns:

	List of times output changes values.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
open(t)

	Command the shutter to open at time t.

Takes the open delay time into account.

Note that the delay time will not be take into account the open delay if the
command is made at t=0 (or other times less than the open delay). No warning
will be issued for this loss of precision during compilation.

	Parameters:

	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, when shutter should be open.

labscript.outputs.StaticAnalogOut

	
class StaticAnalogOut(*args, **kwargs)

	Bases: StaticAnalogQuantity

Static Analog Output class for use with all devices that have constant outputs.

	
__init__(*args, **kwargs)

	Instatiantes the static analog quantity.

Defines an internal tracking variable of the static output value and
calls Output.__init__().

	Parameters:

	
	*args – Passed to Output.__init__().

	**kwargs – Passed to Output.__init__().

Methods

	__init__(*args, **kwargs)

	Instatiantes the static analog quantity.

	add_device(device)

	Adds a child device to this device.

	add_instruction(time, instruction[, units])

	Adds a hardware instruction to the device instruction list.

	apply_calibration(value, units)

	Apply the calibration defined by the unit conversion class, if present.

	constant(value[, units])

	Set the static output value of the output.

	do_checks(trigger_times)

	Basic error checking to ensure the user's instructions make sense.

	expand_timeseries(*args, **kwargs)

	Defines the raw_output attribute.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_change_times()

	Enforces no change times.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	get_ramp_times()

	If this is being called, then it means the parent Pseuedoclock has asked for a list of the output ramp start and stop times.

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	instruction_to_string(instruction)

	Gets a human readable description of an instruction.

	make_timeseries(change_times)

	Since output is static, does nothing.

	offset_instructions_from_trigger(trigger_times)

	Subtracts self.trigger_delay from all instructions at or after each trigger_time.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	allowed_states

	

	clock_limit

	Returns the parent clock line's clock limit.

	default_value

	Value of output if no constant value is commanded.

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	scale_factor

	

	static_value

	The value of the static output.

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	trigger_delay

	The earliest time output can be commanded from this device after a trigger.

	wait_delay

	The earliest time output can be commanded from this device after a wait.

	
description = 'static analog output'

	Brief description of the device.

labscript.outputs.StaticAnalogQuantity

	
class StaticAnalogQuantity(*args, **kwargs)

	Bases: Output

Base class for StaticAnalogOut.

It can also be used internally by other more complex output types.

	
__init__(*args, **kwargs)

	Instatiantes the static analog quantity.

Defines an internal tracking variable of the static output value and
calls Output.__init__().

	Parameters:

	
	*args – Passed to Output.__init__().

	**kwargs – Passed to Output.__init__().

Methods

	__init__(*args, **kwargs)

	Instatiantes the static analog quantity.

	add_device(device)

	Adds a child device to this device.

	add_instruction(time, instruction[, units])

	Adds a hardware instruction to the device instruction list.

	apply_calibration(value, units)

	Apply the calibration defined by the unit conversion class, if present.

	constant(value[, units])

	Set the static output value of the output.

	do_checks(trigger_times)

	Basic error checking to ensure the user's instructions make sense.

	expand_timeseries(*args, **kwargs)

	Defines the raw_output attribute.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_change_times()

	Enforces no change times.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	get_ramp_times()

	If this is being called, then it means the parent Pseuedoclock has asked for a list of the output ramp start and stop times.

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	instruction_to_string(instruction)

	Gets a human readable description of an instruction.

	make_timeseries(change_times)

	Since output is static, does nothing.

	offset_instructions_from_trigger(trigger_times)

	Subtracts self.trigger_delay from all instructions at or after each trigger_time.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	allowed_states

	

	clock_limit

	Returns the parent clock line's clock limit.

	default_value

	Value of output if no constant value is commanded.

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	scale_factor

	

	static_value

	The value of the static output.

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	trigger_delay

	The earliest time output can be commanded from this device after a trigger.

	wait_delay

	The earliest time output can be commanded from this device after a wait.

	
constant(value, units=None)

	Set the static output value of the output.

	Parameters:

	
	value (float [https://docs.python.org/3/library/functions.html#float]) – Value to set the output to.

	units – Units, defined by the unit conversion class, the value is in.

	Raises:

	LabscriptError – If static output has already been set to another value
 or the value lies outside the output limits.

	
default_value = 0.0

	Value of output if no constant value is commanded.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
description = 'static analog quantity'

	Brief description of the device.

	
expand_timeseries(*args, **kwargs)

	Defines the raw_output attribute.

	
get_change_times()

	Enforces no change times.

	Returns:

	An empty list, as expected by the parent pseudoclock.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
make_timeseries(change_times)

	Since output is static, does nothing.

	
property static_value

	The value of the static output.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

labscript.outputs.StaticDDS

	
class StaticDDS(name, parent_device, connection, digital_gate=None, freq_limits=None, freq_conv_class=None, freq_conv_params=None, amp_limits=None, amp_conv_class=None, amp_conv_params=None, phase_limits=None, phase_conv_class=None, phase_conv_params=None, **kwargs)

	Bases: Device

Static DDS class for use with all devices that have static DDS-like outputs.

	
__init__(name, parent_device, connection, digital_gate=None, freq_limits=None, freq_conv_class=None, freq_conv_params=None, amp_limits=None, amp_conv_class=None, amp_conv_params=None, phase_limits=None, phase_conv_class=None, phase_conv_params=None, **kwargs)

	Instantiates a Static DDS quantity.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable for the object created.

	parent_device (IntermediateDevice) – Device this output is
connected to.

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output of parent device this DDS is connected to.

	digital_gate (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Configures a digital output to use as an enable/disable
gate for the output. Should contain keys 'device' and 'connection'
with arguments for the parent_device and connection for instantiating
the DigitalOut. All other (optional) keys are passed as kwargs.

	freq_limits (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – (lower, upper) limits for the
frequency of the output

	freq_conv_class (labscript_utils:labscript_utils.unitconversions, optional) – Unit conversion class for the frequency of the output.

	freq_conv_params (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments passed to the
unit conversion class for the frequency of the output.

	amp_limits (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – (lower, upper) limits for the
amplitude of the output

	amp_conv_class (labscript_utils:labscript_utils.unitconversions, optional) – Unit conversion class for the amplitude of the output.

	amp_conv_params (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments passed to the
unit conversion class for the amplitude of the output.

	phase_limits (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – (lower, upper) limits for the
phase of the output

	phase_conv_class (labscript_utils:labscript_utils.unitconversions, optional) – Unit conversion class for the phase of the output.

	phase_conv_params (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments passed to the
unit conversion class for the phase of the output.

	call_parents_add_device (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Have the parent device run
its add_device method.

	**kwargs – Keyword arguments passed to Device.__init__().

Methods

	__init__(name, parent_device, connection[, ...])

	Instantiates a Static DDS quantity.

	add_device(device)

	Adds a child device to this device.

	disable([t])

	Disable the Output.

	enable([t])

	Enable the Output.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

	setamp(value[, units])

	Set the static amplitude of the output.

	setfreq(value[, units])

	Set the static frequency of the output.

	setphase(value[, units])

	Set the static phase of the output.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	
allowed_children = [<class 'labscript.outputs.StaticAnalogQuantity'>, <class 'labscript.outputs.DigitalOut'>, <class 'labscript.outputs.StaticDigitalOut'>]

	Defines types of devices that are allowed to be children of this device.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
description = 'Static RF'

	Brief description of the device.

	
disable(t=None)

	Disable the Output.

	Parameters:

	t (float [https://docs.python.org/3/library/functions.html#float], optional) – Time, in seconds, to disable the output at.

	Raises:

	LabscriptError – If the DDS is not instantiated with a digital gate.

	
enable(t=None)

	Enable the Output.

	Parameters:

	t (float [https://docs.python.org/3/library/functions.html#float], optional) – Time, in seconds, to enable the output at.

	Raises:

	LabscriptError – If the DDS is not instantiated with a digital gate.

	
setamp(value, units=None)

	Set the static amplitude of the output.

	Parameters:

	
	value (float [https://docs.python.org/3/library/functions.html#float]) – Amplitude to set to.

	units – Units that the value is defined in.

	
setfreq(value, units=None)

	Set the static frequency of the output.

	Parameters:

	
	value (float [https://docs.python.org/3/library/functions.html#float]) – Frequency to set to.

	units – Units that the value is defined in.

	
setphase(value, units=None)

	Set the static phase of the output.

	Parameters:

	
	value (float [https://docs.python.org/3/library/functions.html#float]) – Phase to set to.

	units – Units that the value is defined in.

labscript.outputs.StaticDigitalOut

	
class StaticDigitalOut(*args, **kwargs)

	Bases: StaticDigitalQuantity

Static Digital Output class for use with all devices that have constant outputs.

	
__init__(*args, **kwargs)

	Instatiantes the static digital quantity.

Defines an internal tracking variable of the static output value and
calls Output.__init__().

	Parameters:

	
	*args – Passed to Output.__init__().

	**kwargs – Passed to Output.__init__().

Methods

	__init__(*args, **kwargs)

	Instatiantes the static digital quantity.

	add_device(device)

	Adds a child device to this device.

	add_instruction(time, instruction[, units])

	Adds a hardware instruction to the device instruction list.

	apply_calibration(value, units)

	Apply the calibration defined by the unit conversion class, if present.

	disable(t)

	Commands the output to disable.

	do_checks(trigger_times)

	Basic error checking to ensure the user's instructions make sense.

	enable(t)

	Commands the output to enable.

	expand_timeseries(*args, **kwargs)

	Defines the raw_output attribute.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_change_times()

	Enforces no change times.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	get_ramp_times()

	If this is being called, then it means the parent Pseuedoclock has asked for a list of the output ramp start and stop times.

	go_high()

	Command a static high output.

	go_low()

	Command a static low output.

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	instruction_to_string(instruction)

	Gets a human readable description of an instruction.

	make_timeseries(change_times)

	Since output is static, does nothing.

	offset_instructions_from_trigger(trigger_times)

	Subtracts self.trigger_delay from all instructions at or after each trigger_time.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	repeat_pulse_sequence(t, duration, ...)

	This function only works if the DigitalQuantity is on a fast clock

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	allowed_states

	

	clock_limit

	Returns the parent clock line's clock limit.

	default_value

	Value of output if no constant value is commanded.

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	scale_factor

	

	static_value

	The value of the static output.

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	trigger_delay

	The earliest time output can be commanded from this device after a trigger.

	wait_delay

	The earliest time output can be commanded from this device after a wait.

	
description = 'static digital output'

	Brief description of the device.

labscript.outputs.StaticDigitalQuantity

	
class StaticDigitalQuantity(*args, **kwargs)

	Bases: DigitalQuantity

Base class for StaticDigitalOut.

It can also be used internally by other, more complex, output types.

	
__init__(*args, **kwargs)

	Instatiantes the static digital quantity.

Defines an internal tracking variable of the static output value and
calls Output.__init__().

	Parameters:

	
	*args – Passed to Output.__init__().

	**kwargs – Passed to Output.__init__().

Methods

	__init__(*args, **kwargs)

	Instatiantes the static digital quantity.

	add_device(device)

	Adds a child device to this device.

	add_instruction(time, instruction[, units])

	Adds a hardware instruction to the device instruction list.

	apply_calibration(value, units)

	Apply the calibration defined by the unit conversion class, if present.

	disable(t)

	Commands the output to disable.

	do_checks(trigger_times)

	Basic error checking to ensure the user's instructions make sense.

	enable(t)

	Commands the output to enable.

	expand_timeseries(*args, **kwargs)

	Defines the raw_output attribute.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_change_times()

	Enforces no change times.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	get_ramp_times()

	If this is being called, then it means the parent Pseuedoclock has asked for a list of the output ramp start and stop times.

	go_high()

	Command a static high output.

	go_low()

	Command a static low output.

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	instruction_to_string(instruction)

	Gets a human readable description of an instruction.

	make_timeseries(change_times)

	Since output is static, does nothing.

	offset_instructions_from_trigger(trigger_times)

	Subtracts self.trigger_delay from all instructions at or after each trigger_time.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	repeat_pulse_sequence(t, duration, ...)

	This function only works if the DigitalQuantity is on a fast clock

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	allowed_states

	

	clock_limit

	Returns the parent clock line's clock limit.

	default_value

	Value of output if no constant value is commanded.

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	scale_factor

	

	static_value

	The value of the static output.

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	trigger_delay

	The earliest time output can be commanded from this device after a trigger.

	wait_delay

	The earliest time output can be commanded from this device after a wait.

	
default_value = 0

	Value of output if no constant value is commanded.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
description = 'static digital quantity'

	Brief description of the device.

	
expand_timeseries(*args, **kwargs)

	Defines the raw_output attribute.

	
get_change_times()

	Enforces no change times.

	Returns:

	An empty list, as expected by the parent pseudoclock.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
go_high()

	Command a static high output.

	Raises:

	LabscriptError – If output has already been set low.

	
go_low()

	Command a static low output.

	Raises:

	LabscriptError – If output has already been set high.

	
make_timeseries(change_times)

	Since output is static, does nothing.

	
property static_value

	The value of the static output.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

labscript.outputs.Trigger

	
class Trigger(name, parent_device, connection, trigger_edge_type='rising', **kwargs)

	Bases: DigitalOut

Customized version of DigitalOut that tracks edge type.

	
__init__(name, parent_device, connection, trigger_edge_type='rising', **kwargs)

	Instantiates a DigitalOut object that tracks the trigger edge type.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable name to assign the quantity to.

	parent_device (IntermediateDevice) – Device this quantity is attached to.

	trigger_edge_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Allowed values are 'rising' and 'falling'.

	**kwargs – Passed to Output.__init__().

Methods

	__init__(name, parent_device, connection[, ...])

	Instantiates a DigitalOut object that tracks the trigger edge type.

	add_device(device)

	Adds a child device to this device.

	add_instruction(time, instruction[, units])

	Adds a hardware instruction to the device instruction list.

	apply_calibration(value, units)

	Apply the calibration defined by the unit conversion class, if present.

	disable(t)

	Commands the output to disable.

	do_checks(trigger_times)

	Basic error checking to ensure the user's instructions make sense.

	enable(t)

	Commands the output to enable.

	expand_timeseries(all_times, flat_all_times_len)

	This function evaluates the ramp functions in self.timeseries at the time points in all_times, and creates an array of output values at those times.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_change_times()

	If this function is being called, it means that the parent Pseudoclock has requested a list of times that this output changes state.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	get_ramp_times()

	If this is being called, then it means the parent Pseuedoclock has asked for a list of the output ramp start and stop times.

	go_high(t)

	Commands the output to go high.

	go_low(t)

	Commands the output to go low.

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	instruction_to_string(instruction)

	Gets a human readable description of an instruction.

	make_timeseries(change_times)

	If this is being called, then it means the parent Pseudoclock has asked for a list of this output's states at each time in change_times.

	offset_instructions_from_trigger(trigger_times)

	Subtracts self.trigger_delay from all instructions at or after each trigger_time.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	repeat_pulse_sequence(t, duration, ...)

	This function only works if the DigitalQuantity is on a fast clock

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

	trigger(t, duration)

	Command a trigger pulse.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	allowed_states

	

	clock_limit

	Returns the parent clock line's clock limit.

	default_value

	

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	scale_factor

	

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	trigger_delay

	The earliest time output can be commanded from this device after a trigger.

	wait_delay

	The earliest time output can be commanded from this device after a wait.

	
add_device(device)

	Adds a child device to this device.

	Parameters:

	device (Device) – Device to add.

	Raises:

	LabscriptError – If device is not an allowed child of this device.

	
allowed_children = [<class 'labscript.core.TriggerableDevice'>]

	Defines types of devices that are allowed to be children of this device.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
description = 'trigger device'

	Brief description of the device.

	
trigger(t, duration)

	Command a trigger pulse.

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, for the trigger edge to occur.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – Duration of the trigger, in seconds.

labscript.inputs

Classes for device channels that are inputs

Classes

	AnalogIn(name, parent_device, connection[, ...])

	Analog Input for use with all devices that have an analog input.

labscript.inputs.AnalogIn

	
class AnalogIn(name, parent_device, connection, scale_factor=1.0, units='Volts', **kwargs)

	Bases: Device

Analog Input for use with all devices that have an analog input.

	
__init__(name, parent_device, connection, scale_factor=1.0, units='Volts', **kwargs)

	Instantiates an Analog Input.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable to assign this input to.

	parent_device (IntermediateDevice) – Device input is connected to.

	scale_factor (float [https://docs.python.org/3/library/functions.html#float], optional) – Factor to scale the recorded values by.

	units (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Units of the input.

	**kwargs – Keyword arguments passed to Device.__init__().

Methods

	__init__(name, parent_device, connection[, ...])

	Instantiates an Analog Input.

	acquire(label, start_time, end_time[, ...])

	Command an acquisition for this input.

	add_device(device)

	Adds a child device to this device.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	
acquire(label, start_time, end_time, wait_label='', scale_factor=None, units=None)

	Command an acquisition for this input.

	Parameters:

	
	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unique label for the acquisition. Used to identify the saved trace.

	start_time (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, when the acquisition should start.

	end_time (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, when the acquisition should end.

	wait_label (str [https://docs.python.org/3/library/stdtypes.html#str], optional) –

	scale_factor (float [https://docs.python.org/3/library/functions.html#float]) – Factor to scale the saved values by.

	units – Units of the input, consistent with the unit conversion class.

	Returns:

	Duration of the acquistion, equivalent to end_time - start_time.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
description = 'Analog Input'

	Brief description of the device.

labscript.remote

Classes for configuring remote/secondary BLACS and/or device workers

Classes

	RemoteBLACS(name, host[, port, parent])

	

	SecondaryControlSystem(name, host, port[, ...])

	

labscript.remote.RemoteBLACS

	
class RemoteBLACS(name, host, port=7341, parent=None)

	Bases: _RemoteConnection

	
__init__(name, host, port=7341, parent=None)

	Creates a Device.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable name to assign this device to.

	parent_device (Device) – Parent of this device.

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – Connection on this device that links to parent.

	call_parents_add_device (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Flag to command device to
call its parent device’s add_device when adding a device.

	added_properties (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) –

	gui –

	worker –

	start_order (int [https://docs.python.org/3/library/functions.html#int], optional) – Priority when starting, sorted with all devices.

	stop_order (int [https://docs.python.org/3/library/functions.html#int], optional) – Priority when stopping, sorted with all devices.

	**kwargs – Other options to pass to parent.

Methods

	__init__(name, host[, port, parent])

	Creates a Device.

	add_device(device)

	Adds a child device to this device.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

labscript.remote.SecondaryControlSystem

	
class SecondaryControlSystem(name, host, port, parent=None)

	Bases: _RemoteConnection

	
__init__(name, host, port, parent=None)

	Creates a Device.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable name to assign this device to.

	parent_device (Device) – Parent of this device.

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – Connection on this device that links to parent.

	call_parents_add_device (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Flag to command device to
call its parent device’s add_device when adding a device.

	added_properties (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) –

	gui –

	worker –

	start_order (int [https://docs.python.org/3/library/functions.html#int], optional) – Priority when starting, sorted with all devices.

	stop_order (int [https://docs.python.org/3/library/functions.html#int], optional) – Priority when stopping, sorted with all devices.

	**kwargs – Other options to pass to parent.

Methods

	__init__(name, host, port[, parent])

	Creates a Device.

	add_device(device)

	Adds a child device to this device.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

labscript.constants

Common constant factors for time and frequency

Module Attributes

	ns

	Conversion factor between nanoseconds and seconds

	us

	Conversion factor between microseconds and seconds

	ms

	Conversion factor between milliseconds and seconds

	s

	Conversion factor between seconds and seconds

	Hz

	Conversion factor between hertz and hertz

	kHz

	Conversion factor between kilohertz and hertz

	MHz

	Conversion factor between megahertz and hertz

	GHz

	Conversion factor between gigahertz and hertz

labscript.constants.ns

	
ns = 1e-09

	Conversion factor between nanoseconds and seconds

labscript.constants.us

	
us = 1e-06

	Conversion factor between microseconds and seconds

labscript.constants.ms

	
ms = 0.001

	Conversion factor between milliseconds and seconds

labscript.constants.s

	
s = 1

	Conversion factor between seconds and seconds

labscript.constants.Hz

	
Hz = 1

	Conversion factor between hertz and hertz

labscript.constants.kHz

	
kHz = 1000.0

	Conversion factor between kilohertz and hertz

labscript.constants.MHz

	
MHz = 1000000.0

	Conversion factor between megahertz and hertz

labscript.constants.GHz

	
GHz = 1000000000.0

	Conversion factor between gigahertz and hertz

labscript.labscript

Everything else including the start(), stop(), and wait() functions - all other
classes are also imported here for backwards compatibility

Functions

	add_time_marker(t, label[, color, verbose])

	Add a marker for the specified time.

	generate_code()

	Compiles a shot and saves it to the shot file.

	generate_connection_table(hdf5_file)

	Generates the connection table for the compiled shot.

	generate_wait_table(hdf5_file)

	Generates the wait table for the shot and saves it to the shot file.

	labscript_cleanup()

	restores builtins and the labscript module to its state before labscript_init() was called

	labscript_init(hdf5_filename[, ...])

	Initialises labscript and prepares for compilation.

	load_globals(hdf5_filename)

	

	save_labscripts(hdf5_file)

	Writes the script files for the compiled shot to the shot file.

	save_time_markers(hdf5_file)

	Save shot time markers to the shot file.

	start()

	Indicates the end of the connection table and the start of the experiment logic.

	stop(t[, target_cycle_time, ...])

	Indicate the end of an experiment at the given time, and initiate compilation of instructions, saving them to the HDF5 file.

	trigger_all_pseudoclocks([t])

	

	wait(label, t[, timeout])

	Commands pseudoclocks to pause until resumed by an external trigger, or a timeout is reached.

	write_device_properties(hdf5_file)

	Writes device_properties for each device in compiled shot to shto file.

Classes

	WaitMonitor(name, parent_device, connection, ...)

	

labscript.labscript.add_time_marker

	
add_time_marker(t, label, color=None, verbose=False)

	Add a marker for the specified time. These markers are saved in the HDF5 file.
This allows one to label that time with a string label, and a color that
applications may use to represent this part of the experiment. The color may be
specified as an RGB tuple, or a string of the color name such as ‘red’, or a string
of its hex value such as ‘#ff88g0’. If verbose=True, this funtion also prints the
label and time, which can be useful to view during shot compilation.

Runviewer displays these markers and allows one to manipulate the time axis based on
them, and BLACS’ progress bar plugin displays the name and colour of the most recent
marker as the shot is running

labscript.labscript.generate_code

	
generate_code()

	Compiles a shot and saves it to the shot file.

labscript.labscript.generate_connection_table

	
generate_connection_table(hdf5_file)

	Generates the connection table for the compiled shot.

	Parameters:

	hdf5_file (h5py.File [https://docs.h5py.org/en/stable/high/file.html#h5py.File]) – Handle to file to save to.

labscript.labscript.generate_wait_table

	
generate_wait_table(hdf5_file)

	Generates the wait table for the shot and saves it to the shot file.

	Parameters:

	hdf5_file (h5py.File [https://docs.h5py.org/en/stable/high/file.html#h5py.File]) – Handle to file to save to.

labscript.labscript.labscript_cleanup

	
labscript_cleanup()

	restores builtins and the labscript module to its state before
labscript_init() was called

labscript.labscript.labscript_init

	
labscript_init(hdf5_filename, labscript_file=None, new=False, overwrite=False, load_globals_values=True)

	Initialises labscript and prepares for compilation.

	Parameters:

	
	hdf5_filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to shot file to compile.

	labscript_file – Handle to the labscript file.

	new (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, ensure a new shot file is created.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, overwrite existing shot file, if it exists.

	load_globals_values (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, load global values
from the existing shot file.

labscript.labscript.load_globals

	
load_globals(hdf5_filename)

	

labscript.labscript.save_labscripts

	
save_labscripts(hdf5_file)

	Writes the script files for the compiled shot to the shot file.

If save_hg_info labconfig parameter is True, will attempt to save
hg version info as an attribute.

	Parameters:

	hdf5_file (h5py.File [https://docs.h5py.org/en/stable/high/file.html#h5py.File]) – Handle to file to save to.

labscript.labscript.save_time_markers

	
save_time_markers(hdf5_file)

	Save shot time markers to the shot file.

	Parameters:

	hdf5_file (h5py.File [https://docs.h5py.org/en/stable/high/file.html#h5py.File]) – Handle to file to save to.

labscript.labscript.start

	
start()

	Indicates the end of the connection table and the start of the
experiment logic.

	Returns:

	Time required for all pseudoclocks to start execution.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

labscript.labscript.stop

	
stop(t, target_cycle_time=None, cycle_time_delay_after_programming=False)

	Indicate the end of an experiment at the given time, and initiate compilation of
instructions, saving them to the HDF5 file. Configures some shot options.

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – The end time of the experiment.

	target_cycle_time (float [https://docs.python.org/3/library/functions.html#float], optional) – default: None
How long, in seconds, after the previous shot was started, should this shot be
started by BLACS. This allows one to run shots at a constant rate even if they
are of different durations. If None, BLACS will run the next shot immediately
after the previous shot completes. Otherwise, BLACS will delay starting this
shot until the cycle time has elapsed. This is a request only, and may not be
met if running/programming/saving data from a shot takes long enough that it
cannot be met. This functionality requires the BLACS cycle_time plugin to be
enabled in labconfig. Its accuracy is also limited by software timing,
requirements of exact cycle times beyond software timing should be instead done
using hardware triggers to Pseudoclocks.

	cycle_time_delay_after_programming (bool [https://docs.python.org/3/library/functions.html#bool], optional) – default: False
Whether the BLACS cycle_time plugin should insert the required delay for the
target cycle time after programming devices, as opposed to before programming
them. This is more precise, but may cause some devices to output their first
instruction for longer than desired, since some devices begin outputting their
first instruction as soon as they are programmed rather than when they receive
their first clock tick. If not set, the average cycle time will still be just
as close to as requested (so long as there is adequate time available), however
the time interval between the same part of the experiment from one shot to the
next will not be as precise due to variations in programming time.

labscript.labscript.trigger_all_pseudoclocks

	
trigger_all_pseudoclocks(t='initial')

	

labscript.labscript.wait

	
wait(label, t, timeout=5)

	Commands pseudoclocks to pause until resumed by an external trigger, or a timeout is reached.

	Parameters:

	
	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unique name for wait.

	t (float [https://docs.python.org/3/library/functions.html#float]) – Time, in seconds, at which experiment should begin the wait.

	timeout (float [https://docs.python.org/3/library/functions.html#float], optional) – Maximum length of the wait, in seconds. After
this time, the pseudoclocks are automatically re-triggered.

	Returns:

	Time required for all pseudoclocks to resume execution once
wait has completed.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

labscript.labscript.write_device_properties

	
write_device_properties(hdf5_file)

	Writes device_properties for each device in compiled shot to shto file.

	Parameters:

	hdf5_file (h5py.File [https://docs.h5py.org/en/stable/high/file.html#h5py.File]) – Handle to file to save to.

labscript.labscript.WaitMonitor

	
class WaitMonitor(name, parent_device, connection, acquisition_device, acquisition_connection, timeout_device=None, timeout_connection=None, timeout_trigger_type='rising', **kwargs)

	Bases: Trigger

	
__init__(name, parent_device, connection, acquisition_device, acquisition_connection, timeout_device=None, timeout_connection=None, timeout_trigger_type='rising', **kwargs)

	Create a wait monitor.

This is a device or devices, one of which:

	outputs pulses every time the master pseudoclock begins running (either at
the start of the shot or after a wait

	measures the time in between those pulses in order to determine how long the
experiment was paused for during waits

	optionally, produces pulses in software time that can be used to retrigger
the master pseudoclock if a wait lasts longer than its specified timeout

	Parameters:

	
	parent_device (Device) – The device with buffered digital outputs that should be used to produce
the wait monitor pulses. This device must be one which is clocked by
the master pseudoclock.

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the output connection of parent_device that should be used
to produce the pulses.

	acquisition_device (Device) – The device which is to receive those pulses as input, and that will
measure how long between them. This does not need to be the same device
as the wait monitor output device (corresponding to parent_device and
connection). At time of writing, the only devices in labscript that
can be a wait monitor acquisition device are NI DAQmx devices that have
counter inputs.

	acquisition_connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the input connection on acquisition_device that is to read
the wait monitor pulses. The user must manually connect the output
device (parent_device/connection) to this input with a cable, in
order that the pulses can be read by the device. On NI DAQmx devices,
the acquisition_connection should be the name of the counter to be used
such as ‘Ctr0’. The physical connection should be made to the input
terminal corresponding to the gate of that counter.

	timeout_device (Device, optional) – The device that should be used to produce pulses in software time if a
wait lasts longer than its prescribed timeout. These pulses can
connected to the trigger input of the master pseudoclock, via a digital
logic to ‘AND’ it with other trigger sources, in order to resume the
master pseudoclock upon a wait timing out. To produce these pulses
during a shot requires cooperation between the acquisition device and
the timeout device code, and at present this means only NI DAQmx devices
can be used as the timeout device (though it need not be the same device
as the acquisition device). If not set, timeout pulses will not be
produced and the user must manually resume the master pseudoclock via
other means, or abort a shot if the indended resumption mechanism fails.

	timeout_connection (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Which connection on the timeout device should be used to produce timeout
pulses. Since only NI DAQmx devices are supported at the moment, this
must be a digital output on a port on the NI DAQmx device that is not
being used. Most NI DAQmx devices have both buffered and unbuffered
ports, so typically one would use one line of one of the unbuffered
ports for the timeout output.

	timeout_trigger_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The edge type to be used for the timeout signal, either 'rising' or
'falling'

Methods

	__init__(name, parent_device, connection, ...)

	Create a wait monitor.

	add_device(device)

	Adds a child device to this device.

	add_instruction(time, instruction[, units])

	Adds a hardware instruction to the device instruction list.

	apply_calibration(value, units)

	Apply the calibration defined by the unit conversion class, if present.

	disable(t)

	Commands the output to disable.

	do_checks(trigger_times)

	Basic error checking to ensure the user's instructions make sense.

	enable(t)

	Commands the output to enable.

	expand_timeseries(all_times, flat_all_times_len)

	This function evaluates the ramp functions in self.timeseries at the time points in all_times, and creates an array of output values at those times.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_change_times()

	If this function is being called, it means that the parent Pseudoclock has requested a list of times that this output changes state.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	get_ramp_times()

	If this is being called, then it means the parent Pseuedoclock has asked for a list of the output ramp start and stop times.

	go_high(t)

	Commands the output to go high.

	go_low(t)

	Commands the output to go low.

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	instruction_to_string(instruction)

	Gets a human readable description of an instruction.

	make_timeseries(change_times)

	If this is being called, then it means the parent Pseudoclock has asked for a list of this output's states at each time in change_times.

	offset_instructions_from_trigger(trigger_times)

	Subtracts self.trigger_delay from all instructions at or after each trigger_time.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	repeat_pulse_sequence(t, duration, ...)

	This function only works if the DigitalQuantity is on a fast clock

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

	trigger(t, duration)

	Command a trigger pulse.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	allowed_states

	

	clock_limit

	Returns the parent clock line's clock limit.

	default_value

	

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	scale_factor

	

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	trigger_delay

	The earliest time output can be commanded from this device after a trigger.

	wait_delay

	The earliest time output can be commanded from this device after a wait.

labscript.functions

Contains the functional forms of analog output ramps - these are not used directly,
instead see the interfaces in AnalogQuantity/AnalogOut.

Functions

	exp_ramp(duration, initial, final, zero)

	Defines an exponential ramp via offset value.

	exp_ramp_t(duration, initial, final, ...)

	Defines an exponential ramp via time constant.

	piecewise_accel(duration, initial, final)

	Defines a piecewise acceleration.

	pulse_sequence(pulse_sequence, period)

	Returns a function that interpolates a pulse sequence.

	ramp(duration, initial, final)

	Defines a linear ramp.

	sine(duration, amplitude, angfreq, phase, ...)

	Defines a sine wave.

	sine4_ramp(duration, initial, final)

	Defines a quartic sinusoidally increasing ramp.

	sine4_reverse_ramp(duration, initial, final)

	Defines a quartic sinusoidally decreasing ramp.

	sine_ramp(duration, initial, final)

	Defines a square sinusoidally increasing ramp.

	square_wave(duration, level_0, level_1, ...)

	

labscript.functions.exp_ramp

	
exp_ramp(duration, initial, final, zero)

	Defines an exponential ramp via offset value.

f(t) = (initial-zero)*e^(-rate*t) + zero
rate = log((initial-zero)/(final-zero))/duration

	Parameters:

	
	duration (float [https://docs.python.org/3/library/functions.html#float]) – Length of time for the ramp to complete

	initial (float [https://docs.python.org/3/library/functions.html#float]) – Initial value of ramp.

	final (float [https://docs.python.org/3/library/functions.html#float]) – Final value of ramp.

	zero (float [https://docs.python.org/3/library/functions.html#float]) – Zero offset of ramp.

	Returns:

	Function that takes a single parameter t.

	Return type:

	func

labscript.functions.exp_ramp_t

	
exp_ramp_t(duration, initial, final, time_constant)

	Defines an exponential ramp via time constant.

f(t) = (initial-zero)*e^(-t/time_constant) + zero
zero = (final-initial*e^(-duration/time_constant))/(1-e^(-duration/time_constant))

	Parameters:

	
	duration (float [https://docs.python.org/3/library/functions.html#float]) – Length of time for the ramp to complete

	initial (float [https://docs.python.org/3/library/functions.html#float]) – Initial value of ramp.

	final (float [https://docs.python.org/3/library/functions.html#float]) – Final value of ramp.

	zero (float [https://docs.python.org/3/library/functions.html#float]) – Zero offset of ramp.

	Returns:

	Function that takes a single parameter t.

	Return type:

	func

labscript.functions.piecewise_accel

	
piecewise_accel(duration, initial, final)

	Defines a piecewise acceleration.

	Parameters:

	
	duration (float [https://docs.python.org/3/library/functions.html#float]) – Length of time for the acceleration to complete.

	initial (float [https://docs.python.org/3/library/functions.html#float]) – Initial value.

	final (float [https://docs.python.org/3/library/functions.html#float]) – Final value.

labscript.functions.pulse_sequence

	
pulse_sequence(pulse_sequence, period)

	Returns a function that interpolates a pulse sequence.

Relies on numpy.digitize [https://numpy.org/doc/stable/reference/generated/numpy.digitize.html#numpy.digitize] to perform the interpolation.

	Parameters:

	
	pulse_sequence (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – 2-D timeseries of
change times and associated states.

	period (float [https://docs.python.org/3/library/functions.html#float]) – How long, in seconds, to hold the final state
before repeating the sequence.

	Returns:

	Interpolating function that takes a single parameter t.
Only well defined if t falls within the pulse_sequence change times.

	Return type:

	func

labscript.functions.ramp

	
ramp(duration, initial, final)

	Defines a linear ramp.

f(t) = (final - initial)*t/duration + initial

	Parameters:

	
	duration (float [https://docs.python.org/3/library/functions.html#float]) – Duration of ramp

	initial (float [https://docs.python.org/3/library/functions.html#float]) – Starting value of ramp

	final (float [https://docs.python.org/3/library/functions.html#float]) – Ending value of ramp

	Returns:

	Function that takes a single parameter t.

	Return type:

	func

labscript.functions.sine

	
sine(duration, amplitude, angfreq, phase, dc_offset)

	Defines a sine wave.

f(t) = amplitude*sin(angfreq*t + phase) + dc_offset

	Parameters:

	
	duration (float [https://docs.python.org/3/library/functions.html#float]) – Not used.

	amplitude (float [https://docs.python.org/3/library/functions.html#float]) – Amplitude of sine wave.

	angfreq (float [https://docs.python.org/3/library/functions.html#float]) – Angular frequency of sine wave.

	phase (float [https://docs.python.org/3/library/functions.html#float]) – Phase of sine wave.

	dc_offset (float [https://docs.python.org/3/library/functions.html#float]) – Verticle offset of sine wave.

	Returns:

	Function that takes a single parameter t.

	Return type:

	func

labscript.functions.sine4_ramp

	
sine4_ramp(duration, initial, final)

	Defines a quartic sinusoidally increasing ramp.

f(t) = (final-initial)*(sin(pi*t/(2*duration)))^4 + initial

	Parameters:

	
	duration (float [https://docs.python.org/3/library/functions.html#float]) – Length of time for the ramp to complete.

	initial (float [https://docs.python.org/3/library/functions.html#float]) – Initial value of ramp.

	final (float [https://docs.python.org/3/library/functions.html#float]) – Final value of ramp.

	Returns:

	Function that takes a single parameter t.

	Return type:

	func

labscript.functions.sine4_reverse_ramp

	
sine4_reverse_ramp(duration, initial, final)

	Defines a quartic sinusoidally decreasing ramp.

f(t) = (final-initial)*(sin(pi/2+pi*t/(2*duration)))^4 + initial

	Parameters:

	
	duration (float [https://docs.python.org/3/library/functions.html#float]) – Length of time for the ramp to complete.

	initial (float [https://docs.python.org/3/library/functions.html#float]) – Initial value of ramp.

	final (float [https://docs.python.org/3/library/functions.html#float]) – Final value of ramp.

	Returns:

	Function that takes a single parameter t.

	Return type:

	func

labscript.functions.sine_ramp

	
sine_ramp(duration, initial, final)

	Defines a square sinusoidally increasing ramp.

f(t) = (final-initial)*(sin(pi*t/(2*duration)))^2 + initial

	Parameters:

	
	duration (float [https://docs.python.org/3/library/functions.html#float]) – Length of time for the ramp to complete.

	initial (float [https://docs.python.org/3/library/functions.html#float]) – Initial value of ramp.

	final (float [https://docs.python.org/3/library/functions.html#float]) – Final value of ramp.

	Returns:

	Function that takes a single parameter t.

	Return type:

	func

labscript.functions.square_wave

	
square_wave(duration, level_0, level_1, frequency, phase, duty_cycle)

	

labscript.base

The labscript base class for all I/O/Device classes

Classes

	Device(name, parent_device, connection[, ...])

	Parent class of all device and input/output channels.

labscript.base.Device

	
class Device(name, parent_device, connection, call_parents_add_device=True, added_properties={}, gui=None, worker=None, start_order=None, stop_order=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Parent class of all device and input/output channels.

You usually won’t interact directly with this class directly (i.e. you never
instantiate this class directly) but it provides some useful functionality
that is then available to all subclasses.

	
__init__(name, parent_device, connection, call_parents_add_device=True, added_properties={}, gui=None, worker=None, start_order=None, stop_order=None, **kwargs)

	Creates a Device.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – python variable name to assign this device to.

	parent_device (Device) – Parent of this device.

	connection (str [https://docs.python.org/3/library/stdtypes.html#str]) – Connection on this device that links to parent.

	call_parents_add_device (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Flag to command device to
call its parent device’s add_device when adding a device.

	added_properties (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) –

	gui –

	worker –

	start_order (int [https://docs.python.org/3/library/functions.html#int], optional) – Priority when starting, sorted with all devices.

	stop_order (int [https://docs.python.org/3/library/functions.html#int], optional) – Priority when stopping, sorted with all devices.

	**kwargs – Other options to pass to parent.

Methods

	__init__(name, parent_device, connection[, ...])

	Creates a Device.

	add_device(device)

	Adds a child device to this device.

	generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save to h5 file.

	get_all_children()

	Get all children devices for this device.

	get_all_outputs()

	Get all children devices that are outputs.

	get_properties([location])

	Get all properties in location.

	get_property(name[, location])

	Method to get a property of this device already set using Device.set_property().

	init_device_group(hdf5_file)

	Creates the device group in the shot file.

	quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	set_properties(properties_dict, property_names)

	Add one or a bunch of properties packed into properties_dict

	set_property(name, value[, location, overwrite])

	Method to set a property for this device.

Attributes

	allowed_children

	Defines types of devices that are allowed to be children of this device.

	description

	Brief description of the device.

	parent_clock_line

	Stores the clocking clockline, which may be itself.

	pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	t0

	The earliest time output can be commanded from this device at the start of the experiment.

	
add_device(device)

	Adds a child device to this device.

	Parameters:

	device (Device) – Device to add.

	Raises:

	LabscriptError – If device is not an allowed child of this device.

	
allowed_children = None

	Defines types of devices that are allowed to be children of this device.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
description = 'Generic Device'

	Brief description of the device.

	
generate_code(hdf5_file)

	Generate hardware instructions for device and children, then save
to h5 file.

Will recursively call generate_code for all children devices.

	Parameters:

	hdf5_file (h5py.File [https://docs.h5py.org/en/stable/high/file.html#h5py.File]) – Handle to shot file.

	
get_all_children()

	Get all children devices for this device.

	Returns:

	List of children Device.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_all_outputs()

	Get all children devices that are outputs.

Recursively calls get_all_outputs() on each child device. Output’s will
return a list containing just themselves.

	Returns:

	List of children Output.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_properties(location=None)

	Get all properties in location.

	Parameters:

	location (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Location to get properties from.
If None, return all properties.

	Returns:

	Dictionary of properties.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_property(name, location=None, *args, **kwargs)

	Method to get a property of this device already set using Device.set_property().

If the property is not already set, a default value will be returned
if specified as the argument after 'name', if there is only one argument
after 'name' and the argument is either not a keyword argurment or is a
keyword argument with the name 'default'.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of property to get.

	location (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If not None, only search for name
in location.

	default – The default value. If not provided, an exception is raised if the
value is not set.

	Returns:

	Property value.

	Raises:

	LabscriptError – If property not set and default not provided, or default
 conventions not followed.

Examples

Examples of acceptable signatures:

>>> get_property('example') # 'example' will be returned if set, or an exception raised
>>> get_property('example', 7) # 7 returned if 'example' is not set
>>> get_property('example', default=7) # 7 returnd if 'example' is not set

Example signatures that WILL ALWAYS RAISE AN EXCEPTION:

>>> get_property('example', 7, 8)
>>> get_property('example', 7, default=9)
>>> get_property('example', default=7, x=9)

	
init_device_group(hdf5_file)

	Creates the device group in the shot file.

	Parameters:

	hdf5_file (h5py.File [https://docs.h5py.org/en/stable/high/file.html#h5py.File]) – File handle to
create the group in.

	Returns:

	Created group handle.

	Return type:

	h5py.Group [https://docs.h5py.org/en/stable/high/group.html#h5py.Group]

	
property parent_clock_line

	Stores the clocking clockline, which may be itself.

	Type:

	ClockLine

	
property pseudoclock_device

	Stores the clocking pseudoclock, which may be itself.

	Type:

	PseudoclockDevice

	
quantise_to_pseudoclock(times)

	Quantises times to the resolution of the controlling pseudoclock.

	Parameters:

	times (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or list or set or float) – Time,
in seconds, to quantise.

	Returns:

	Quantised times.

	Return type:

	same type as times

	
set_properties(properties_dict, property_names, overwrite=False)

	Add one or a bunch of properties packed into properties_dict

	Parameters:

	
	properties_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of properties and their values.

	property_names (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Is a dictionary {key:val, …} where each val
is a list [var1, var2, …] of variables to be pulled from
properties_dict and added to the property localtion with name key

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Toggles overwriting of existing properties.

	
set_property(name, value, location=None, overwrite=False)

	Method to set a property for this device.

Property will be stored in the connection table and used
during connection table comparisons.

Value must satisfy eval(repr(value)) == value.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to save property value to.

	value – Value to set property to.

	location (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Specify a location to save property to, such as
'device_properties' or 'connection_table_properties'.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, allow overwriting a property
already set.

	Raises:

	LabscriptError – If 'location' is not valid or trying to overwrite an
 existing property with 'overwrite'=False.

	
property t0

	The earliest time output can be commanded from this device at
the start of the experiment. This is nonzero on secondary pseudoclock
devices due to triggering delays.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

labscript.utils

Utility functions

Functions

	bitfield(arrays, dtype)

	Converts a list of arrays of ones and zeros into a single array of unsigned ints of the given datatype.

	fastflatten(inarray, dtype)

	A faster way of flattening our arrays than pylab.flatten.

	is_clock_line(device)

	Returns whether the connection is an instance of ClockLine

	is_pseudoclock_device(device)

	Returns whether the connection is an instance of PseudoclockDevice

	is_remote_connection(connection)

	Returns whether the connection is an instance of _RemoteConnection

	max_or_zero(*args, **kwargs)

	Returns max of the arguments or zero if sequence is empty.

	print_time(t, description)

	Print time with a descriptive string.

	set_passed_properties([property_names])

	Decorator for device __init__ methods that saves the listed arguments/keyword arguments as properties.

	suppress_all_warnings([state])

	A context manager which modifies compiler.suppress_all_warnings

	suppress_mild_warnings([state])

	A context manager which modifies compiler.suppress_mild_warnings

Exceptions

	LabscriptError

	A labscript error.

labscript.utils.bitfield

	
bitfield(arrays, dtype)

	Converts a list of arrays of ones and zeros into a single
array of unsigned ints of the given datatype.

	Parameters:

	
	arrays (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of numpy arrays consisting of ones and zeros.

	dtype (data-type) – Type to convert to.

	Returns:

	Numpy array with data type dtype.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

labscript.utils.fastflatten

	
fastflatten(inarray, dtype)

	A faster way of flattening our arrays than pylab.flatten.

pylab.flatten returns a generator which takes a lot of time and memory
to convert into a numpy array via array(list(generator)). The problem
is that generators don’t know how many values they’ll return until
they’re done. This algorithm produces a numpy array directly by
first calculating what the length will be. It is several orders of
magnitude faster. Note that we can’t use numpy.ndarray.flatten here
since our inarray is really a list of 1D arrays of varying length
and/or single values, not a N-dimenional block of homogeneous data
like a numpy array.

	Parameters:

	
	inarray (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of 1-D arrays to flatten.

	dtype (data-type) – Type of the data in the arrays.

	Returns:

	Flattened array.

	Return type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

labscript.utils.is_clock_line

	
is_clock_line(device)

	Returns whether the connection is an instance of ClockLine

This function defers and caches the import of ClockLine. This both
breaks the circular import between Device and ClockLine, while
maintaining reasonable performance (this performs better than importing each time as
the lookup in the modules hash table is slower).

labscript.utils.is_pseudoclock_device

	
is_pseudoclock_device(device)

	Returns whether the connection is an instance of PseudoclockDevice

This function defers and caches the import of PseudoclockDevice. This both
breaks the circular import between Device and PseudoclockDevice, while
maintaining reasonable performance (this performs better than importing each time as
the lookup in the modules hash table is slower).

labscript.utils.is_remote_connection

	
is_remote_connection(connection)

	Returns whether the connection is an instance of _RemoteConnection

This function defers and caches the import of _RemoteConnection. This both
breaks the circular import between Device and _RemoteConnection, while
maintaining reasonable performance (this performs better than importing each time as
the lookup in the modules hash table is slower).

labscript.utils.max_or_zero

	
max_or_zero(*args, **kwargs)

	Returns max of the arguments or zero if sequence is empty.

This protects the call to max() which would normally throw an error on an empty
sequence.

	Parameters:

	
	*args – Items to compare.

	**kwargs – Passed to max().

	Returns:

	Max of *args.

labscript.utils.print_time

	
print_time(t, description)

	Print time with a descriptive string.

Useful debug tool to print time at a specific point
in the shot, during shot compilation. Helpful when
the time is calculated.

	Parameters:

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – Time to print

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – Descriptive label to print with it

labscript.utils.set_passed_properties

	
set_passed_properties(property_names=None)

	Decorator for device __init__ methods that saves the listed arguments/keyword
arguments as properties.

Argument values as passed to __init__ will be saved, with
the exception that if an instance attribute exists after __init__ has run that has
the same name as an argument, the instance attribute will be saved instead of the
argument value. This allows code within __init__ to process default arguments
before they are saved.

Internally, all properties are accessed by calling self.get_property().

	Parameters:

	property_names (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary {key:val}, where each val
is a list [var1, var2, …] of instance attribute names and/or method call
arguments (of the decorated method). Values of the instance
attributes/method call arguments will be saved to the location specified by
key.

labscript.utils.suppress_all_warnings

	
suppress_all_warnings(state=True)

	A context manager which modifies compiler.suppress_all_warnings

Allows the user to suppress (or show) all warnings for specific lines. Useful when
you want to hide/show all warnings from specific lines.

	Parameters:

	
	state (bool [https://docs.python.org/3/library/functions.html#bool]) – The new state for compiler.suppress_all_warnings. Defaults to

	provided. (True if not explicitly) –

labscript.utils.suppress_mild_warnings

	
suppress_mild_warnings(state=True)

	A context manager which modifies compiler.suppress_mild_warnings

Allows the user to suppress (or show) mild warnings for specific lines. Useful when
you want to hide/show all warnings from specific lines.

	Parameters:

	
	state (bool [https://docs.python.org/3/library/functions.html#bool]) – The new state for compiler.suppress_mild_warnings. Defaults to

	provided. (True if not explicitly) –

labscript.utils.LabscriptError

	
exception LabscriptError

	A labscript error.

This is used to denote an error within the labscript suite itself.
Is a thin wrapper of Exception [https://docs.python.org/3/library/exceptions.html#Exception].

labscript suite components

The labscript suite is modular by design, and is comprised of:

Python libraries

	[image: _images/labscript_32nx32n.svg]
 [https://docs.labscriptsuite.org/projects/labscript/en/latest/]
	labscript [https://docs.labscriptsuite.org/projects/labscript/en/latest/] — Expressive composition of hardware-timed experiments

	[image: _images/labscript_32nx32n.svg]
 [https://docs.labscriptsuite.org/projects/labscript-devices/en/latest/]
	labscript-devices [https://docs.labscriptsuite.org/projects/labscript-devices/en/latest/] — Plugin architecture for controlling experiment hardware

	[image: _images/labscript_32nx32n.svg]
 [https://docs.labscriptsuite.org/projects/labscript-utils/en/latest/]
	labscript-utils [https://docs.labscriptsuite.org/projects/labscript-utils/en/latest/] — Shared modules used by the labscript suite

Graphical applications

	[image: _images/runmanager_32nx32n.svg]
 [https://docs.labscriptsuite.org/projects/runmanager/en/latest/]
	runmanager [https://docs.labscriptsuite.org/projects/runmanager/en/latest/] — Graphical and remote interface to parameterized experiments

	[image: _images/blacs_32nx32n.svg]
 [https://docs.labscriptsuite.org/projects/blacs/en/latest/]
	blacs [https://docs.labscriptsuite.org/projects/blacs/en/latest/] — Graphical interface to scientific instruments and experiment supervision

	[image: _images/lyse_32nx32n.svg]
 [https://docs.labscriptsuite.org/projects/lyse/en/latest/]
	lyse [https://docs.labscriptsuite.org/projects/lyse/en/latest/] — Online analysis of live experiment data

	[image: _images/runviewer_32nx32n.svg]
 [https://docs.labscriptsuite.org/projects/runviewer/en/latest/]
	runviewer [https://docs.labscriptsuite.org/projects/runviewer/en/latest/] — Visualize hardware-timed experiment instructions

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 labscript	

 	
 	
 labscript.base	

 	
 	
 labscript.constants	

 	
 	
 labscript.core	

 	
 	
 labscript.functions	

 	
 	
 labscript.inputs	

 	
 	
 labscript.labscript	

 	
 	
 labscript.outputs	

 	
 	
 labscript.remote	

 	
 	
 labscript.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

_

 	
 	__init__() (AnalogIn method)

 	(AnalogOut method)

 	(AnalogQuantity method)

 	(ClockLine method)

 	(DDS method)

 	(DDSQuantity method)

 	(Device method)

 	(DigitalOut method)

 	(DigitalQuantity method)

 	(IntermediateDevice method)

 	(Output method)

 	(Pseudoclock method)

 	(PseudoclockDevice method)

 	(RemoteBLACS method)

 	(SecondaryControlSystem method)

 	(Shutter method)

 	(StaticAnalogOut method)

 	(StaticAnalogQuantity method)

 	(StaticDDS method)

 	(StaticDigitalOut method)

 	(StaticDigitalQuantity method)

 	(Trigger method)

 	(TriggerableDevice method)

 	(WaitMonitor method)

A

 	
 	acquire() (AnalogIn method)

 	add_device() (ClockLine method)

 	(Device method)

 	(Pseudoclock method)

 	(Trigger method)

 	add_instruction() (Output method)

 	add_time_marker() (in module labscript.labscript)

 	allowed_children (ClockLine attribute)

 	(DDSQuantity attribute)

 	(Device attribute)

 	(Pseudoclock attribute)

 	(PseudoclockDevice attribute)

 	(StaticDDS attribute)

 	(Trigger attribute)

 	
 	allowed_states (DigitalQuantity attribute)

 	(Output attribute)

 	AnalogIn (class in labscript.inputs)

 	AnalogOut (class in labscript.outputs)

 	AnalogQuantity (class in labscript.outputs)

 	apply_calibration() (Output method)

B

 	
 	bitfield() (in module labscript.utils)

C

 	
 	clock_limit (ClockLine property)

 	(Output property)

 	ClockLine (class in labscript.core)

 	close() (Shutter method)

 	
 	collect_change_times() (Pseudoclock method)

 	constant() (AnalogQuantity method)

 	(StaticAnalogQuantity method)

 	customramp() (AnalogQuantity method)

D

 	
 	DDS (class in labscript.outputs)

 	DDSQuantity (class in labscript.outputs)

 	default_value (AnalogQuantity attribute)

 	(DigitalQuantity attribute)

 	(StaticAnalogQuantity attribute)

 	(StaticDigitalQuantity attribute)

 	description (AnalogIn attribute)

 	(AnalogOut attribute)

 	(AnalogQuantity attribute)

 	(ClockLine attribute)

 	(DDSQuantity attribute)

 	(Device attribute)

 	(DigitalOut attribute)

 	(DigitalQuantity attribute)

 	(Output attribute)

 	(Pseudoclock attribute)

 	(PseudoclockDevice attribute)

 	(Shutter attribute)

 	(StaticAnalogOut attribute)

 	(StaticAnalogQuantity attribute)

 	(StaticDDS attribute)

 	(StaticDigitalOut attribute)

 	(StaticDigitalQuantity attribute)

 	(Trigger attribute)

 	
 	Device (class in labscript.base)

 	DigitalOut (class in labscript.outputs)

 	DigitalQuantity (class in labscript.outputs)

 	disable() (DDSQuantity method)

 	(DigitalQuantity method)

 	(StaticDDS method)

 	do_checks() (Output method)

 	(PseudoclockDevice method)

 	(TriggerableDevice method)

 	dtype (DigitalQuantity attribute)

 	(Output attribute)

E

 	
 	enable() (DDSQuantity method)

 	(DigitalQuantity method)

 	(StaticDDS method)

 	exp_ramp() (AnalogQuantity method)

 	(in module labscript.functions)

 	
 	exp_ramp_t() (AnalogQuantity method)

 	(in module labscript.functions)

 	expand_change_times() (Pseudoclock method)

 	expand_timeseries() (Output method)

 	(StaticAnalogQuantity method)

 	(StaticDigitalQuantity method)

F

 	
 	fastflatten() (in module labscript.utils)

G

 	
 	generate_clock() (Pseudoclock method)

 	generate_code() (Device method)

 	(in module labscript.labscript)

 	(Pseudoclock method)

 	(PseudoclockDevice method)

 	(Shutter method)

 	(TriggerableDevice method)

 	generate_connection_table() (in module labscript.labscript)

 	generate_wait_table() (in module labscript.labscript)

 	get_all_children() (Device method)

 	get_all_outputs() (Device method)

 	(Output method)

 	
 	get_change_times() (Output method)

 	(Shutter method)

 	(StaticAnalogQuantity method)

 	(StaticDigitalQuantity method)

 	get_outputs_by_clockline() (Pseudoclock method)

 	get_properties() (Device method)

 	get_property() (Device method)

 	get_ramp_times() (Output method)

 	GHz (in module labscript.constants)

 	go_high() (DigitalQuantity method)

 	(StaticDigitalQuantity method)

 	go_low() (DigitalQuantity method)

 	(StaticDigitalQuantity method)

H

 	
 	Hz (in module labscript.constants)

I

 	
 	init_device_group() (Device method)

 	instruction_to_string() (Output method)

 	IntermediateDevice (class in labscript.core)

 	
 	is_clock_line() (in module labscript.utils)

 	is_master_pseudoclock (PseudoclockDevice property)

 	is_pseudoclock_device() (in module labscript.utils)

 	is_remote_connection() (in module labscript.utils)

K

 	
 	kHz (in module labscript.constants)

L

 	
 	
 labscript.base

 	module

 	
 labscript.constants

 	module

 	
 labscript.core

 	module

 	
 labscript.functions

 	module

 	
 labscript.inputs

 	module

 	
 labscript.labscript

 	module

 	
 	
 labscript.outputs

 	module

 	
 labscript.remote

 	module

 	
 labscript.utils

 	module

 	labscript_cleanup() (in module labscript.labscript)

 	labscript_init() (in module labscript.labscript)

 	LabscriptError

 	load_globals() (in module labscript.labscript)

M

 	
 	make_timeseries() (Output method)

 	(StaticAnalogQuantity method)

 	(StaticDigitalQuantity method)

 	max_or_zero() (in module labscript.utils)

 	MHz (in module labscript.constants)

 	minimum_clock_high_time (ClockLine property)

 	(IntermediateDevice property)

 	minimum_recovery_time (TriggerableDevice attribute)

 	
 module

 	labscript.base

 	labscript.constants

 	labscript.core

 	labscript.functions

 	labscript.inputs

 	labscript.labscript

 	labscript.outputs

 	labscript.remote

 	labscript.utils

 	
 	ms (in module labscript.constants)

N

 	
 	ns (in module labscript.constants)

O

 	
 	offset_instructions_from_trigger() (Output method)

 	(PseudoclockDevice method)

 	
 	open() (Shutter method)

 	Output (class in labscript.outputs)

P

 	
 	parent_clock_line (Device property)

 	piecewise_accel() (in module labscript.functions)

 	piecewise_accel_ramp() (AnalogQuantity method)

 	print_time() (in module labscript.utils)

 	
 	Pseudoclock (class in labscript.core)

 	pseudoclock_device (Device property)

 	PseudoclockDevice (class in labscript.core)

 	pulse() (DDSQuantity method)

 	pulse_sequence() (in module labscript.functions)

Q

 	
 	quantise_to_pseudoclock() (Device method)

R

 	
 	ramp() (AnalogQuantity method)

 	(in module labscript.functions)

 	
 	RemoteBLACS (class in labscript.remote)

 	repeat_pulse_sequence() (DigitalQuantity method)

S

 	
 	s (in module labscript.constants)

 	save_labscripts() (in module labscript.labscript)

 	save_time_markers() (in module labscript.labscript)

 	scale_factor (Output attribute)

 	SecondaryControlSystem (class in labscript.remote)

 	set_initial_trigger_time() (PseudoclockDevice method)

 	set_passed_properties() (in module labscript.utils)

 	set_properties() (Device method)

 	set_property() (Device method)

 	setamp() (DDSQuantity method)

 	(StaticDDS method)

 	setfreq() (DDSQuantity method)

 	(StaticDDS method)

 	setphase() (DDSQuantity method)

 	(StaticDDS method)

 	Shutter (class in labscript.outputs)

 	sine() (AnalogQuantity method)

 	(in module labscript.functions)

 	sine4_ramp() (AnalogQuantity method)

 	(in module labscript.functions)

 	
 	sine4_reverse_ramp() (AnalogQuantity method)

 	(in module labscript.functions)

 	sine_ramp() (AnalogQuantity method)

 	(in module labscript.functions)

 	square_wave() (AnalogQuantity method)

 	(in module labscript.functions)

 	square_wave_levels() (AnalogQuantity method)

 	start() (in module labscript.labscript)

 	static_value (StaticAnalogQuantity property)

 	(StaticDigitalQuantity property)

 	StaticAnalogOut (class in labscript.outputs)

 	StaticAnalogQuantity (class in labscript.outputs)

 	StaticDDS (class in labscript.outputs)

 	StaticDigitalOut (class in labscript.outputs)

 	StaticDigitalQuantity (class in labscript.outputs)

 	stop() (in module labscript.labscript)

 	suppress_all_warnings() (in module labscript.utils)

 	suppress_mild_warnings() (in module labscript.utils)

T

 	
 	t0 (Device property)

 	Trigger (class in labscript.outputs)

 	trigger() (PseudoclockDevice method)

 	(Trigger method)

 	(TriggerableDevice method)

 	trigger_all_pseudoclocks() (in module labscript.labscript)

 	
 	trigger_delay (Output property)

 	(PseudoclockDevice attribute)

 	trigger_edge_type (PseudoclockDevice attribute)

 	(TriggerableDevice attribute)

 	trigger_minimum_duration (PseudoclockDevice attribute)

 	TriggerableDevice (class in labscript.core)

U

 	
 	us (in module labscript.constants)

W

 	
 	wait() (in module labscript.labscript)

 	wait_delay (Output property)

 	(PseudoclockDevice attribute)

 	
 	WaitMonitor (class in labscript.labscript)

 	write_device_properties() (in module labscript.labscript)

 _static/minus.png

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 labscript

_images/connection_diagram.png
pulseblaster_0
Type: PulseBlaster

pineblaster_0
Type: PineBlaster

(Pseudoclock) (Pseudoclock)
3 3
N S/
\OQ % Qu TO.)
C - Y/ -
& @ %t 7
& 8 £
ni_card_0 ni_card_1 novatech_DDS9m_1 novatech_DDs9m_2
Type: NI_PCle_6363 Type: NI PCI 6733 Type: NovaTechDDS9M Type: NovaTechDDS9M
(1/0 board) (output board) (4x DDS outputs) (4x DDS outputs)
7 Y 2 A A X N
i
: 3| = 3l gl o 333 -
= @ (%) %) wn| o 0
=~ = < ® @ = 3 33 3
£ ; : source_MOT_AOM :
S bias_coil_x . dipole_trap_AOM | .
Tvpe: AnalogOut Type: DDS - — -5
switch_1 ype: AnalogOu Type: DDS ©
Type: DigitalOut bi | rf_knife
|a.s_c0| |y Type: DDS repump_AOM
MOT _coil Type: AnalogOut

|

Type: AnalogOut

MOT _fluorescence
Type: Analogln

[
[

J

bias_coil_z
Type: AnalogOut

|

laser_offset AOM
Type: StaticDDS

|

Type: StaticDDS

[

imaging_ AOM

Type: DDS

